// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_LLT_H #define EIGEN_LLT_H // IWYU pragma: private #include "./InternalHeaderCheck.h" namespace Eigen { namespace internal { template struct traits > : traits { typedef MatrixXpr XprKind; typedef SolverStorage StorageKind; typedef int StorageIndex; enum { Flags = 0 }; }; template struct LLT_Traits; } // namespace internal /** \ingroup Cholesky_Module * * \class LLT * * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features * * \tparam MatrixType_ the type of the matrix of which we are computing the LL^T Cholesky decomposition * \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper. * The other triangular part won't be read. * * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite * matrix A such that A = LL^* = U^*U, where L is lower triangular. * * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, * for that purpose, we recommend the Cholesky decomposition without square root which is more stable * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other * situations like generalised eigen problems with hermitian matrices. * * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive * definite matrices, use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine * whether a system of equations has a solution. * * Example: \include LLT_example.cpp * Output: \verbinclude LLT_example.out * * \b Performance: for best performance, it is recommended to use a column-major storage format * with the Lower triangular part (the default), or, equivalently, a row-major storage format * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization * step, and rank-updates can be up to 3 times slower. * * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. * * Note that during the decomposition, only the lower (or upper, as defined by UpLo_) triangular part of A is * considered. Therefore, the strict lower part does not have to store correct values. * * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT */ template class LLT : public SolverBase > { public: typedef MatrixType_ MatrixType; typedef SolverBase Base; friend class SolverBase; EIGEN_GENERIC_PUBLIC_INTERFACE(LLT) enum { MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; enum { PacketSize = internal::packet_traits::size, AlignmentMask = int(PacketSize) - 1, UpLo = UpLo_ }; typedef internal::LLT_Traits Traits; /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via LLT::compute(const MatrixType&). */ LLT() : m_matrix(), m_isInitialized(false) {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa LLT() */ explicit LLT(Index size) : m_matrix(size, size), m_isInitialized(false) {} template explicit LLT(const EigenBase& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_isInitialized(false) { compute(matrix.derived()); } /** \brief Constructs a LLT factorization from a given matrix * * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when * \c MatrixType is a Eigen::Ref. * * \sa LLT(const EigenBase&) */ template explicit LLT(EigenBase& matrix) : m_matrix(matrix.derived()), m_isInitialized(false) { compute(matrix.derived()); } /** \returns a view of the upper triangular matrix U */ inline typename Traits::MatrixU matrixU() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return Traits::getU(m_matrix); } /** \returns a view of the lower triangular matrix L */ inline typename Traits::MatrixL matrixL() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return Traits::getL(m_matrix); } #ifdef EIGEN_PARSED_BY_DOXYGEN /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. * * Since this LLT class assumes anyway that the matrix A is invertible, the solution * theoretically exists and is unique regardless of b. * * Example: \include LLT_solve.cpp * Output: \verbinclude LLT_solve.out * * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() */ template inline const Solve solve(const MatrixBase& b) const; #endif template void solveInPlace(const MatrixBase& bAndX) const; template LLT& compute(const EigenBase& matrix); /** \returns an estimate of the reciprocal condition number of the matrix of * which \c *this is the Cholesky decomposition. */ RealScalar rcond() const { eigen_assert(m_isInitialized && "LLT is not initialized."); eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); return internal::rcond_estimate_helper(m_l1_norm, *this); } /** \returns the LLT decomposition matrix * * TODO: document the storage layout */ inline const MatrixType& matrixLLT() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return m_matrix; } MatrixType reconstructedMatrix() const; /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was successful, * \c NumericalIssue if the matrix.appears not to be positive definite. */ ComputationInfo info() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return m_info; } /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix * is self-adjoint. * * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: * \code x = decomposition.adjoint().solve(b) \endcode */ const LLT& adjoint() const noexcept { return *this; } constexpr Index rows() const noexcept { return m_matrix.rows(); } constexpr Index cols() const noexcept { return m_matrix.cols(); } template LLT& rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); #ifndef EIGEN_PARSED_BY_DOXYGEN template void _solve_impl(const RhsType& rhs, DstType& dst) const; template void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const; #endif protected: EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) /** \internal * Used to compute and store L * The strict upper part is not used and even not initialized. */ MatrixType m_matrix; RealScalar m_l1_norm; bool m_isInitialized; ComputationInfo m_info; }; namespace internal { template struct llt_inplace; template static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) { using std::sqrt; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::ColXpr ColXpr; typedef internal::remove_all_t ColXprCleaned; typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; typedef Matrix TempVectorType; typedef typename TempVectorType::SegmentReturnType TempVecSegment; Index n = mat.cols(); eigen_assert(mat.rows() == n && vec.size() == n); TempVectorType temp; if (sigma > 0) { // This version is based on Givens rotations. // It is faster than the other one below, but only works for updates, // i.e., for sigma > 0 temp = sqrt(sigma) * vec; for (Index i = 0; i < n; ++i) { JacobiRotation g; g.makeGivens(mat(i, i), -temp(i), &mat(i, i)); Index rs = n - i - 1; if (rs > 0) { ColXprSegment x(mat.col(i).tail(rs)); TempVecSegment y(temp.tail(rs)); apply_rotation_in_the_plane(x, y, g); } } } else { temp = vec; RealScalar beta = 1; for (Index j = 0; j < n; ++j) { RealScalar Ljj = numext::real(mat.coeff(j, j)); RealScalar dj = numext::abs2(Ljj); Scalar wj = temp.coeff(j); RealScalar swj2 = sigma * numext::abs2(wj); RealScalar gamma = dj * beta + swj2; RealScalar x = dj + swj2 / beta; if (x <= RealScalar(0)) return j; RealScalar nLjj = sqrt(x); mat.coeffRef(j, j) = nLjj; beta += swj2 / dj; // Update the terms of L Index rs = n - j - 1; if (rs) { temp.tail(rs) -= (wj / Ljj) * mat.col(j).tail(rs); if (!numext::is_exactly_zero(gamma)) mat.col(j).tail(rs) = (nLjj / Ljj) * mat.col(j).tail(rs) + (nLjj * sigma * numext::conj(wj) / gamma) * temp.tail(rs); } } } return -1; } template struct llt_inplace { typedef typename NumTraits::Real RealScalar; template static Index unblocked(MatrixType& mat) { using std::sqrt; eigen_assert(mat.rows() == mat.cols()); const Index size = mat.rows(); for (Index k = 0; k < size; ++k) { Index rs = size - k - 1; // remaining size Block A21(mat, k + 1, k, rs, 1); Block A10(mat, k, 0, 1, k); Block A20(mat, k + 1, 0, rs, k); RealScalar x = numext::real(mat.coeff(k, k)); if (k > 0) x -= A10.squaredNorm(); if (x <= RealScalar(0)) return k; mat.coeffRef(k, k) = x = sqrt(x); if (k > 0 && rs > 0) A21.noalias() -= A20 * A10.adjoint(); if (rs > 0) A21 /= x; } return -1; } template static Index blocked(MatrixType& m) { eigen_assert(m.rows() == m.cols()); Index size = m.rows(); if (size < 32) return unblocked(m); Index blockSize = size / 8; blockSize = (blockSize / 16) * 16; blockSize = (std::min)((std::max)(blockSize, Index(8)), Index(128)); for (Index k = 0; k < size; k += blockSize) { // partition the matrix: // A00 | - | - // lu = A10 | A11 | - // A20 | A21 | A22 Index bs = (std::min)(blockSize, size - k); Index rs = size - k - bs; Block A11(m, k, k, bs, bs); Block A21(m, k + bs, k, rs, bs); Block A22(m, k + bs, k + bs, rs, rs); Index ret; if ((ret = unblocked(A11)) >= 0) return k + ret; if (rs > 0) A11.adjoint().template triangularView().template solveInPlace(A21); if (rs > 0) A22.template selfadjointView().rankUpdate(A21, typename NumTraits::Literal(-1)); // bottleneck } return -1; } template static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) { return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } }; template struct llt_inplace { typedef typename NumTraits::Real RealScalar; template static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) { Transpose matt(mat); return llt_inplace::unblocked(matt); } template static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) { Transpose matt(mat); return llt_inplace::blocked(matt); } template static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) { Transpose matt(mat); return llt_inplace::rankUpdate(matt, vec.conjugate(), sigma); } }; template struct LLT_Traits { typedef const TriangularView MatrixL; typedef const TriangularView MatrixU; static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } static bool inplace_decomposition(MatrixType& m) { return llt_inplace::blocked(m) == -1; } }; template struct LLT_Traits { typedef const TriangularView MatrixL; typedef const TriangularView MatrixU; static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } static bool inplace_decomposition(MatrixType& m) { return llt_inplace::blocked(m) == -1; } }; } // end namespace internal /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix * * \returns a reference to *this * * Example: \include TutorialLinAlgComputeTwice.cpp * Output: \verbinclude TutorialLinAlgComputeTwice.out */ template template LLT& LLT::compute(const EigenBase& a) { eigen_assert(a.rows() == a.cols()); const Index size = a.rows(); m_matrix.resize(size, size); if (!internal::is_same_dense(m_matrix, a.derived())) m_matrix = a.derived(); // Compute matrix L1 norm = max abs column sum. m_l1_norm = RealScalar(0); // TODO move this code to SelfAdjointView for (Index col = 0; col < size; ++col) { RealScalar abs_col_sum; if (UpLo_ == Lower) abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); else abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); if (abs_col_sum > m_l1_norm) m_l1_norm = abs_col_sum; } m_isInitialized = true; bool ok = Traits::inplace_decomposition(m_matrix); m_info = ok ? Success : NumericalIssue; return *this; } /** Performs a rank one update (or dowdate) of the current decomposition. * If A = LL^* before the rank one update, * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector * of same dimension. */ template template LLT& LLT::rankUpdate(const VectorType& v, const RealScalar& sigma) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); eigen_assert(v.size() == m_matrix.cols()); eigen_assert(m_isInitialized); if (internal::llt_inplace::rankUpdate(m_matrix, v, sigma) >= 0) m_info = NumericalIssue; else m_info = Success; return *this; } #ifndef EIGEN_PARSED_BY_DOXYGEN template template void LLT::_solve_impl(const RhsType& rhs, DstType& dst) const { _solve_impl_transposed(rhs, dst); } template template void LLT::_solve_impl_transposed(const RhsType& rhs, DstType& dst) const { dst = rhs; matrixL().template conjugateIf().solveInPlace(dst); matrixU().template conjugateIf().solveInPlace(dst); } #endif /** \internal use x = llt_object.solve(x); * * This is the \em in-place version of solve(). * * \param bAndX represents both the right-hand side matrix b and result x. * * This version avoids a copy when the right hand side matrix b is not needed anymore. * * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. * This function will const_cast it, so constness isn't honored here. * * \sa LLT::solve(), MatrixBase::llt() */ template template void LLT::solveInPlace(const MatrixBase& bAndX) const { eigen_assert(m_isInitialized && "LLT is not initialized."); eigen_assert(m_matrix.rows() == bAndX.rows()); matrixL().solveInPlace(bAndX); matrixU().solveInPlace(bAndX); } /** \returns the matrix represented by the decomposition, * i.e., it returns the product: L L^*. * This function is provided for debug purpose. */ template MatrixType LLT::reconstructedMatrix() const { eigen_assert(m_isInitialized && "LLT is not initialized."); return matrixL() * matrixL().adjoint().toDenseMatrix(); } /** \cholesky_module * \returns the LLT decomposition of \c *this * \sa SelfAdjointView::llt() */ template inline const LLT::PlainObject> MatrixBase::llt() const { return LLT(derived()); } /** \cholesky_module * \returns the LLT decomposition of \c *this * \sa SelfAdjointView::llt() */ template inline const LLT::PlainObject, UpLo> SelfAdjointView::llt() const { return LLT(m_matrix); } } // end namespace Eigen #endif // EIGEN_LLT_H