Commit b8596252 authored by zhanggzh's avatar zhanggzh
Browse files

update setup code and readme file

parent 430f9025
# <div align="center"><strong>KTransformers</strong></div>
## 简介
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块都是完全独立的,便于修改和快速进行研究实验。
🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
## 在线演示
你可以直接在模型页面上测试大多数 [model hub](https://huggingface.co/models) 上的模型。 我们也提供了 [私有模型托管、模型版本管理以及推理API](https://huggingface.co/pricing)
这里是一些例子:
- [用 BERT 做掩码填词](https://huggingface.co/google-bert/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [用 Electra 做命名实体识别](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [用 GPT-2 做文本生成](https://huggingface.co/openai-community/gpt2?text=A+long+time+ago%2C+)
- [用 RoBERTa 做自然语言推理](https://huggingface.co/FacebookAI/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [用 DistilBERT 做问答](https://huggingface.co/distilbert/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [用 T5 做翻译](https://huggingface.co/google-t5/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,由抱抱脸团队打造,是一个文本生成的官方 demo。
## 安装
组件支持组合
### 编译whl包安装使用
编译ktransformers依赖fastpt工具、torch2.4.1及对应的dtk环境 ,下载fastpt**.whl包,pip3 install fastpt**.whl包,
```
source /opt/dtk/cuda/env.sh
bash install_dcu.sh
```
编译出的包在dist路径下,使用Transformers时注意添加以下环境变量
export LD_LIBRARY_PATH=/usr/local/lib/python3.10/site-packages/torch/lib:$LD_LIBRARY_PATH
## 模型架构
| PyTorch版本 | fastpt版本 |KTransformers版本 | DTK版本 | Python版本 | 推荐编译方式 |
| ----------- | ----------- | ----------- | ------------------------ | -----------------| ------------ |
| 2.4.1 | 2.0.1 |0.2.3 | >= 25.04 | 3.8、3.10、3.11 | fastpt不转码 |
🤗 Transformers 支持的[**所有的模型检查点**](https://huggingface.co/models)[用户](https://huggingface.co/users)[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合
+ pytorch版本大于2.4.1 && dtk版本大于25.04 推荐使用fastpt不转码编译
目前的检查点数量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
### 1、使用pip方式安装
KTransformers whl包下载目录:[光和开发者社区](https://download.sourcefind.cn:65024/4/main),选择对应的pytorch版本和python版本下载对应KTransformers的whl包
```shell
pip install torch* (下载torch的whl包)
pip install fastpt* --no-deps (下载fastpt的whl包)
source /usr/local/bin/fastpt -E
pip install ktransformers* (下载的ktransformers-fastpt的whl包) --no-deps
```
### 2、使用源码编译方式安装
🤗 Transformers 目前支持如下的架构: 模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary).
#### 编译环境准备
提供基于fastpt不转码编译:
要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器(tokenizer),敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)
1. 基于光源pytorch基础镜像环境:镜像下载地址:[光合开发者社区](https://sourcefind.cn/#/image/dcu/pytorch),根据pytorch、python、dtk及系统下载对应的镜像版本
这些实现均已于多个数据集测试(请参看用例脚本)并应于原版实现表现相当。你可以在用例文档的[此节](https://huggingface.co/docs/transformers/examples)中了解表现的细节。
2. 基于现有python环境:安装pytorch,fastpt whl包下载目录:[光合开发者社区](https://sourcefind.cn/#/image/dcu/pytorch),根据python、dtk版本,下载对应pytorch的whl包。安装命令如下:
```shell
pip install cpufeature
pip install torch* (下载torch的whl包)
pip install fastpt* --no-deps (下载fastpt的whl包, 安装顺序,先安装torch,后安装fastpt)
pip install setuptools==59.5.0 wheel
```
#### 源码编译安装
- 代码下载
```shell
git clone https://developer.sourcefind.cn/codes/OpenDAS/ktransformers.git # 根据编译需要切换分支
```
- 提供2种源码编译方式(进入ktransformers目录):
```
1. 设置不转码编译环境变量
source /usr/local/bin/fastpt -C
## 了解更多
2. 编译whl包并安装
bash install_dcu.sh
pip3 install dist/ktransformers*.whl --no-deps
```
#### 注意事项
+ 若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
+ ROCM_PATH为dtk的路径,默认为/opt/dtk
| 章节 | 描述 |
|-|-|
| [文档](https://huggingface.co/docs/transformers/) | 完整的 API 文档和教程 |
| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 |
| [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 |
| [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers``pytorch-pretrained-bert` 迁移到 🤗 Transformers |
## 验证
```
python3
Python 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import ktransformers
>>> ktransformers.__version__
'0.2.3post1'
>>>
```
版本号与官方版本同步,查询该软件的版本号,例如0.2.3post1;
## 引用
## Known Issue
-
我们已将此库的[论文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)正式发表,如果你使用了 🤗 Transformers 库,请引用:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```
## 参考资料
- [README_ORIGIN](README_ORIGIN.md)
- [README_zh-CN](README_zh-CN.md)
- [https://github.com/kvcache-ai/ktransformers](https://github.com/kvcache-ai/ktransformers)
......@@ -343,11 +343,11 @@ def check_fastpt_version():
print(f"Detected fastpt installation, version: {fastpt_version}")
# Compare version numbers
if version.parse(fastpt_version) >= version.parse('2.0.2'):
print("fastpt version ≥ 2.0.2")
if version.parse(fastpt_version) >= version.parse('2.0.1'):
print("fastpt version ≥ 2.0.1")
return True
else:
print(f"fastpt version {fastpt_version} < 2.0.2")
print(f"fastpt version {fastpt_version} < 2.0.1")
return False
except ImportError as e:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment