Commit 907251c7 authored by Azure's avatar Azure
Browse files

done support deepseekv3

parent f748cd29
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8
# This file was automatically generated from src/transformers/models/deepseek_v3/modular_deepseek_v3.py. # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
# Do NOT edit this file manually as any edits will be overwritten by the generation of #
# the file from the modular. If any change should be done, please apply the change to the # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# modular_deepseek_v3.py file directly. One of our CI enforces this. # and OPT implementations in this library. It has been modified from its
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DeepSeek model."""
import math import math
from typing import Callable, List, Optional, Tuple, Union import warnings
from typing import List, Optional, Tuple, Union
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.generation import GenerationMixin from transformers.modeling_attn_mask_utils import (
from transformers.modeling_attn_mask_utils import AttentionMaskConverter AttentionMaskConverter,
# from transformers.modeling_flash_attention_utils import FlashAttentionKwargs _prepare_4d_attention_mask,
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast _prepare_4d_causal_attention_mask,
from ktransformers.util.modeling_rope_utils import ROPE_INIT_FUNCTIONS )
from transformers.modeling_utils import PreTrainedModel # ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.modeling_outputs import (
# from transformers.processing_utils import Unpack BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import (
ALL_LAYERNORM_LAYERS,
is_torch_greater_or_equal_than_1_13,
)
from transformers.utils import ( from transformers.utils import (
# LossKwargs,
add_start_docstrings, add_start_docstrings,
add_start_docstrings_to_model_forward, add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging, logging,
replace_return_docstrings, replace_return_docstrings,
) )
from transformers.utils.deprecation import deprecate_kwarg from transformers.utils.import_utils import is_torch_fx_available
from .configuration_deepseek_v3 import DeepseekV3Config from .configuration_deepseek_v3 import DeepseekV3Config
import torch.distributed as dist
import numpy as np
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
# It means that the function will not be traced through and simply appear as a node in the graph.
if is_torch_fx_available():
if not is_torch_greater_or_equal_than_1_13:
import torch.fx
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DeepseekV3Config" _CONFIG_FOR_DOC = "DeepseekV3Config"
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
)
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class DeepseekV3RMSNorm(nn.Module): class DeepseekV3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6): def __init__(self, hidden_size, eps=1e-6):
""" """
...@@ -51,69 +107,268 @@ class DeepseekV3RMSNorm(nn.Module): ...@@ -51,69 +107,268 @@ class DeepseekV3RMSNorm(nn.Module):
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype) return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
class DeepseekV3RotaryEmbedding(nn.Module): class DeepseekV3RotaryEmbedding(nn.Module):
def __init__(self, config: DeepseekV3Config, device=None): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__() super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config self.dim = dim
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype(),
)
self.max_seq_len_cached = None
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(t, self.inv_freq.to(t.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
"""DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
"""DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings)
- (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False) self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device): t = torch.arange(
""" self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
dynamic RoPE layers should recompute `inv_freq` in the following situations: )
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences) freqs = torch.outer(t, self.inv_freq)
""" # Different from paper, but it uses a different permutation in order to obtain the same calculation
seq_len = torch.max(position_ids) + 1 emb = torch.cat((freqs, freqs), dim=-1)
if seq_len > self.max_seq_len_cached: # growth self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
# Inverse dim formula to find dim based on number of rotations
def yarn_find_correction_dim(
num_rotations, dim, base=10000, max_position_embeddings=2048
):
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
2 * math.log(base)
)
# Find dim range bounds based on rotations
def yarn_find_correction_range(
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
):
low = math.floor(
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
)
high = math.ceil(
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
)
return max(low, 0), min(high, dim - 1) # Clamp values just in case
def yarn_get_mscale(scale=1, mscale=1):
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
def yarn_linear_ramp_mask(min, max, dim):
if min == max:
max += 0.001 # Prevent singularity
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
original_max_position_embeddings=4096,
beta_fast=32,
beta_slow=1,
mscale=1,
mscale_all_dim=0,
):
self.scaling_factor = scaling_factor
self.original_max_position_embeddings = original_max_position_embeddings
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.mscale = mscale
self.mscale_all_dim = mscale_all_dim
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len self.max_seq_len_cached = seq_len
dim = self.dim
freq_extra = 1.0 / (
self.base
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
)
freq_inter = 1.0 / (
self.scaling_factor
* self.base
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
)
low, high = yarn_find_correction_range(
self.beta_fast,
self.beta_slow,
dim,
self.base,
self.original_max_position_embeddings,
)
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
device=device, dtype=torch.float32
)
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
self.register_buffer("inv_freq", inv_freq, persistent=False)
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset t = torch.arange(seq_len, device=device, dtype=torch.float32)
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy) freqs = torch.outer(t, inv_freq)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) _mscale = float(
self.max_seq_len_cached = self.original_max_seq_len yarn_get_mscale(self.scaling_factor, self.mscale)
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
)
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1) emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() self.register_buffer(
sin = emb.sin() "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
)
self.register_buffer(
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
)
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class DeepseekV3MLP(nn.Module): class DeepseekV3MLP(nn.Module):
...@@ -121,7 +376,9 @@ class DeepseekV3MLP(nn.Module): ...@@ -121,7 +376,9 @@ class DeepseekV3MLP(nn.Module):
super().__init__() super().__init__()
self.config = config self.config = config
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size self.intermediate_size = (
config.intermediate_size if intermediate_size is None else intermediate_size
)
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
...@@ -133,52 +390,87 @@ class DeepseekV3MLP(nn.Module): ...@@ -133,52 +390,87 @@ class DeepseekV3MLP(nn.Module):
return down_proj return down_proj
class DeepseekV3TopkRouter(nn.Module): class MoEGate(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
self.config = config self.config = config
self.top_k = config.num_experts_per_tok self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts self.n_routed_experts = config.n_routed_experts
self.routed_scaling_factor = config.routed_scaling_factor self.routed_scaling_factor = config.routed_scaling_factor
self.scoring_func = config.scoring_func
self.seq_aux = config.seq_aux
self.topk_method = config.topk_method
self.n_group = config.n_group self.n_group = config.n_group
self.topk_group = config.topk_group self.topk_group = config.topk_group
# topk selection algorithm
self.norm_topk_prob = config.norm_topk_prob self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(
torch.empty((self.n_routed_experts, self.gating_dim))
)
if self.topk_method == "noaux_tc":
self.e_score_correction_bias = nn.Parameter(
torch.empty((self.n_routed_experts))
)
self.reset_parameters()
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, config.hidden_size))) def reset_parameters(self) -> None:
self.e_score_correction_bias = nn.Parameter(torch.empty((self.n_routed_experts))) import torch.nn.init as init
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states): def forward(self, hidden_states):
hidden_states = hidden_states.view(-1, self.config.hidden_size) bsz, seq_len, h = hidden_states.shape
router_logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32)) ### compute gating score
scores = router_logits.sigmoid() hidden_states = hidden_states.view(-1, h)
topk_indices = self.get_topk_indices(scores) logits = F.linear(
topk_weights = scores.gather(1, topk_indices) hidden_states.type(torch.float32), self.weight.type(torch.float32), None
if self.norm_topk_prob: )
denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20 if self.scoring_func == "sigmoid":
topk_weights /= denominator scores = logits.sigmoid()
topk_weights = topk_weights * self.routed_scaling_factor else:
return topk_indices, topk_weights, router_logits raise NotImplementedError(
f"insupportable scoring function for MoE gating: {self.scoring_func}"
)
@torch.no_grad() ### select top-k experts
def get_topk_indices(self, scores): if self.topk_method == "noaux_tc":
scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0) scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
group_scores = ( group_scores = (
scores_for_choice.view(-1, self.n_group, self.n_routed_experts // self.n_group) scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
.topk(2, dim=-1)[0] ) # [n, n_group]
.sum(dim=-1) group_idx = torch.topk(
) group_scores, k=self.topk_group, dim=-1, sorted=False
group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] )[
group_mask = torch.zeros_like(group_scores) 1
group_mask.scatter_(1, group_idx, 1) ] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = ( score_mask = (
group_mask.unsqueeze(-1) group_mask.unsqueeze(-1)
.expand(-1, self.n_group, self.n_routed_experts // self.n_group) .expand(
.reshape(-1, self.n_routed_experts) bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
)
.reshape(bsz * seq_len, -1)
) # [n, e]
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
_, topk_idx = torch.topk(
tmp_scores, k=self.top_k, dim=-1, sorted=False
) )
scores_for_choice = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) topk_weight = scores.gather(1, topk_idx)
topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)[1] else:
return topk_indices raise NotImplementedError(
f"insupportable TopK function for MoE gating: {self.topk_method}"
)
### norm gate to sum 1
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
return topk_idx, topk_weight
class DeepseekV3MoE(nn.Module): class DeepseekV3MoE(nn.Module):
""" """
...@@ -188,77 +480,135 @@ class DeepseekV3MoE(nn.Module): ...@@ -188,77 +480,135 @@ class DeepseekV3MoE(nn.Module):
def __init__(self, config): def __init__(self, config):
super().__init__() super().__init__()
self.config = config self.config = config
self.num_experts_per_tok = config.num_experts_per_tok
if hasattr(config, "ep_size") and config.ep_size > 1:
assert config.ep_size == dist.get_world_size()
self.ep_size = config.ep_size
self.experts_per_rank = config.n_routed_experts // config.ep_size
self.ep_rank = dist.get_rank()
self.experts = nn.ModuleList( self.experts = nn.ModuleList(
[ [
DeepseekV3MLP(config, intermediate_size=config.moe_intermediate_size) (
for _ in range(config.n_routed_experts) DeepseekV3MLP(
config, intermediate_size=config.moe_intermediate_size
)
if i >= self.ep_rank * self.experts_per_rank
and i < (self.ep_rank + 1) * self.experts_per_rank
else None
)
for i in range(config.n_routed_experts)
]
)
else:
self.ep_size = 1
self.experts_per_rank = config.n_routed_experts
self.ep_rank = 0
self.experts = nn.ModuleList(
[
DeepseekV3MLP(
config, intermediate_size=config.moe_intermediate_size
)
for i in range(config.n_routed_experts)
] ]
) )
self.gate = DeepseekV3TopkRouter(config) self.gate = MoEGate(config)
self.shared_experts = DeepseekV3MLP(config=config, intermediate_size=config.moe_intermediate_size) if config.n_shared_experts is not None:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
self.shared_experts = DeepseekV3MLP(
config=config, intermediate_size=intermediate_size
)
def forward(self, hidden_states): def forward(self, hidden_states):
residuals = hidden_states identity = hidden_states
orig_shape = hidden_states.shape orig_shape = hidden_states.shape
topk_indices, topk_weights, router_logits = self.gate(hidden_states) topk_idx, topk_weight = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape) flat_topk_idx = topk_idx.view(-1)
hidden_states = hidden_states + self.shared_experts(residuals) if not self.training:
return hidden_states, router_logits y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
if self.config.n_shared_experts is not None:
def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor): y = y + self.shared_experts(identity)
final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype) return y
expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=len(self.experts))
expert_mask = expert_mask.permute(2, 0, 1)
for expert_idx in range(len(self.experts)):
expert = self.experts[expert_idx]
mask = expert_mask[expert_idx]
token_indices, weight_indices = torch.where(mask)
if token_indices.numel() > 0:
expert_weights = topk_weights[token_indices, weight_indices]
expert_input = hidden_states[token_indices]
expert_output = expert(expert_input)
weighted_output = expert_output * expert_weights.unsqueeze(-1)
final_hidden_states.index_add_(0, token_indices, weighted_output)
return final_hidden_states.type(hidden_states.dtype)
@torch.no_grad()
def rotate_half(x): def moe_infer(self, x, topk_ids, topk_weight):
"""Rotates half the hidden dims of the input.""" cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
x1 = x[..., : x.shape[-1] // 2] cnts.scatter_(1, topk_ids, 1)
x2 = x[..., x.shape[-1] // 2 :] tokens_per_expert = cnts.sum(dim=0)
return torch.cat((-x2, x1), dim=-1) idxs = topk_ids.view(-1).argsort()
sorted_tokens = x[idxs // topk_ids.shape[1]]
sorted_tokens_shape = sorted_tokens.shape
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): if self.ep_size > 1:
"""Applies Rotary Position Embedding to the query and key tensors. tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
tokens_per_expert_group = tokens_per_expert.new_empty(
Args: tokens_per_expert.shape[0]
q (`torch.Tensor`): The query tensor. )
k (`torch.Tensor`): The key tensor. dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
cos (`torch.Tensor`): The cosine part of the rotary embedding. output_splits = (
sin (`torch.Tensor`): The sine part of the rotary embedding. tokens_per_expert_group.view(self.ep_size, -1)
position_ids (`torch.Tensor`, *optional*): .sum(1)
Deprecated and unused. .cpu()
unsqueeze_dim (`int`, *optional*, defaults to 1): .numpy()
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and .tolist()
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note )
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and gathered_tokens = sorted_tokens.new_empty(
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have )
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
Returns: dist.all_to_all(
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. list(gathered_tokens.split(output_splits)),
""" list(sorted_tokens.split(input_split_sizes)),
cos = cos.unsqueeze(unsqueeze_dim) )
sin = sin.unsqueeze(unsqueeze_dim) tokens_per_expert_post_gather = tokens_per_expert_group.view(
q_embed = (q * cos) + (rotate_half(q) * sin) self.ep_size, self.experts_per_rank
k_embed = (k * cos) + (rotate_half(k) * sin) ).sum(dim=0)
return q_embed, k_embed gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
s = 0
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
gatherd_idxs[s : s + k] = i % self.experts_per_rank
s += k
gatherd_idxs = gatherd_idxs.argsort()
sorted_tokens = gathered_tokens[gatherd_idxs]
tokens_per_expert = tokens_per_expert_post_gather
tokens_per_expert = tokens_per_expert.cpu().numpy()
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = expert(tokens_for_this_expert)
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
if self.ep_size > 1:
new_x = torch.empty_like(outs)
new_x[gatherd_idxs] = outs
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
dist.all_to_all(
list(gathered_tokens.split(input_split_sizes)),
list(new_x.split(output_splits)),
)
outs = gathered_tokens
new_x = torch.empty_like(outs)
new_x[idxs] = outs
final_out = (
new_x.view(*topk_ids.shape, -1)
.type(topk_weight.dtype)
.mul_(topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return final_out
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
""" """
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
...@@ -267,162 +617,528 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: ...@@ -267,162 +617,528 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
batch, num_key_value_heads, slen, head_dim = hidden_states.shape batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1: if n_rep == 1:
return hidden_states return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward( # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def yarn_get_mscale(scale=1, mscale=1):
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
class DeepseekV3Attention(nn.Module): class DeepseekV3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper""" """Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DeepseekV3Config, layer_idx: int): def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
super().__init__() super().__init__()
self.config = config self.config = config
self.layer_idx = layer_idx self.layer_idx = layer_idx
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads self.num_heads = config.num_attention_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta self.rope_theta = config.rope_theta
self.q_lora_rank = config.q_lora_rank self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim self.qk_nope_head_dim = config.qk_nope_head_dim
self.q_head_dim = config.qk_rope_head_dim + config.qk_nope_head_dim self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
self.is_causal = True self.is_causal = True
self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
if self.q_lora_rank is None:
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
)
else:
self.q_a_proj = nn.Linear(
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
)
self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank) self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False) self.q_b_proj = nn.Linear(
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
)
self.kv_a_proj_with_mqa = nn.Linear( self.kv_a_proj_with_mqa = nn.Linear(
config.hidden_size, self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim, config.kv_lora_rank + config.qk_rope_head_dim,
bias=config.attention_bias, bias=config.attention_bias,
) )
self.kv_a_layernorm = DeepseekV3RMSNorm(self.kv_lora_rank) self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
self.kv_b_proj = nn.Linear( self.kv_b_proj = nn.Linear(
self.kv_lora_rank, config.kv_lora_rank,
self.num_heads * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), self.num_heads
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
bias=False, bias=False,
) )
self.o_proj = nn.Linear( self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim, self.num_heads * self.v_head_dim,
config.hidden_size, self.hidden_size,
bias=config.attention_bias, bias=config.attention_bias,
) )
self._init_rope()
self.scaling = self.q_head_dim ** (-0.5) self.softmax_scale = self.q_head_dim ** (-0.5)
if self.config.rope_scaling is not None: if self.config.rope_scaling is not None:
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
scaling_factor = self.config.rope_scaling["factor"] scaling_factor = self.config.rope_scaling["factor"]
if mscale_all_dim: if mscale_all_dim:
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
self.scaling = self.scaling * mscale * mscale self.softmax_scale = self.softmax_scale * mscale * mscale
# TODO apply in DeepSeekV3Model to share accrose layers
self.rotary_emb = DeepseekV3RotaryEmbedding(config=config) def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = DeepseekV3RotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "yarn":
kwargs = {
key: self.config.rope_scaling[key]
for key in [
"original_max_position_embeddings",
"beta_fast",
"beta_slow",
"mscale",
"mscale_all_dim",
]
if key in self.config.rope_scaling
}
self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
**kwargs,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
.transpose(1, 2)
.contiguous()
)
def forward( def forward(
self, self,
hidden_states: torch.Tensor, hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None, past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None,
**kwargs# : Unpack[FlashAttentionKwargs], **kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1] if "padding_mask" in kwargs:
hidden_shape = (*input_shape, self.num_heads, -1) warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(hidden_shape).transpose(1, 2) if self.q_lora_rank is None:
q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) q = self.q_proj(hidden_states)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states) compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
kv = (
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
.transpose(1, 2)
)
k_nope, value_states = torch.split(
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
)
kv_seq_len = value_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
k_pass = self.kv_b_proj(self.kv_a_layernorm(k_pass)).view(hidden_shape).transpose(1, 2) q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_rot = k_rot.view(*input_shape, 1, self.qk_rope_head_dim).transpose(1, 2) query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
cos, sin = position_embeddings key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin) key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
k_rot = k_rot.expand(-1, self.num_heads, -1, -1) key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
query_states = torch.cat((q_pass, q_rot), dim=-1) attn_weights = (
key_states = torch.cat((k_pass, k_rot), dim=-1) torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
)
if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim: if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
assert attention_mask is not None
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.attention_dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
class DeepseekV3FlashAttention2(DeepseekV3Attention):
"""
DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# DeepseekV3FlashAttention2 attention does not support output_attentions
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop("padding_mask")
output_attentions = False
bsz, q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
kv = (
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
.transpose(1, 2)
)
k_nope, value_states = torch.split(
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
)
kv_seq_len = value_states.shape[-2]
kv_seq_len = value_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
if self.q_head_dim != self.v_head_dim:
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim]) value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
if past_key_value is not None: if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states, value_states, self.layer_idx, cache_kwargs
)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (DeepseekV3RMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
elif torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
else:
target_dtype = (
self.q_proj.weight.dtype
if self.q_lora_rank is None
else self.q_a_proj.weight.dtype
)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once( logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " f"The input hidden states seems to be silently casted in float32, this might be related to"
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
) )
else:
raise NotImplementedError( query_states = query_states.to(target_dtype)
f"Attention implementation {self.config._attn_implementation} is not supported. " key_states = key_states.to(target_dtype)
"Please use 'eager' or 'sdpa'." value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
softmax_scale=self.softmax_scale,
) )
# attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] if self.q_head_dim != self.v_head_dim:
attn_output = attn_output[:, :, :, : self.v_head_dim]
attn_output = attn_output.reshape(
bsz, q_len, self.num_heads * self.v_head_dim
).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
attn_output, attn_weights = attention_interface( return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self, self,
query_states, query_states,
key_states, key_states,
value_states, value_states,
attention_mask, attention_mask,
dropout=0.0 if not self.training else self.attention_dropout, query_length,
scaling=self.scaling, dropout=0.0,
**kwargs, softmax_scale=None,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
(
query_states,
key_states,
value_states,
indices_q,
cu_seq_lens,
max_seq_lens,
) = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
) )
if self.config._attn_implementation == "flash_attention_2" and self.q_head_dim != self.v_head_dim: cu_seqlens_q, cu_seqlens_k = cu_seq_lens
attn_output = attn_output[:, :, :, : self.v_head_dim] max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output_unpad = flash_attn_varlen_func(
attn_output = self.o_proj(attn_output) query_states,
return attn_output, attn_weights key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(
attn_output_unpad, indices_q, batch_size, query_length
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
return attn_output
def _upad_input(
self, query_layer, key_layer, value_layer, attention_mask, query_length
):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
indices_k,
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
query_layer, attention_mask
)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
ATTENTION_CLASSES = {
"eager": DeepseekV3Attention,
"flash_attention_2": DeepseekV3FlashAttention2,
}
class DeepseekV3DecoderLayer(nn.Module): class DeepseekV3DecoderLayer(nn.Module):
...@@ -430,35 +1146,63 @@ class DeepseekV3DecoderLayer(nn.Module): ...@@ -430,35 +1146,63 @@ class DeepseekV3DecoderLayer(nn.Module):
super().__init__() super().__init__()
self.hidden_size = config.hidden_size self.hidden_size = config.hidden_size
self.self_attn = DeepseekV3Attention(config=config, layer_idx=layer_idx) self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
config=config, layer_idx=layer_idx
if layer_idx >= config.first_k_dense_replace: )
self.mlp = DeepseekV3MoE(config)
else:
self.mlp = DeepseekV3MLP(config)
self.input_layernorm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.mlp = (
self.post_attention_layernorm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) DeepseekV3MoE(config)
if (
config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % config.moe_layer_freq == 0
)
else DeepseekV3MLP(config)
)
self.input_layernorm = DeepseekV3RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
self.post_attention_layernorm = DeepseekV3RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward( def forward(
self, self,
hidden_states: torch.Tensor, hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False, output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False, use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs,
**kwargs# : Unpack[FlashAttentionKwargs], ) -> Tuple[
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states residual = hidden_states
hidden_states = self.input_layernorm(hidden_states) hidden_states = self.input_layernorm(hidden_states)
# Self Attention # Self Attention
hidden_states, self_attn_weights = self.self_attn( hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states, hidden_states=hidden_states,
attention_mask=attention_mask, attention_mask=attention_mask,
position_ids=position_ids, position_ids=position_ids,
...@@ -466,7 +1210,6 @@ class DeepseekV3DecoderLayer(nn.Module): ...@@ -466,7 +1210,6 @@ class DeepseekV3DecoderLayer(nn.Module):
output_attentions=output_attentions, output_attentions=output_attentions,
use_cache=use_cache, use_cache=use_cache,
cache_position=cache_position, cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs, **kwargs,
) )
hidden_states = residual + hidden_states hidden_states = residual + hidden_states
...@@ -475,24 +1218,20 @@ class DeepseekV3DecoderLayer(nn.Module): ...@@ -475,24 +1218,20 @@ class DeepseekV3DecoderLayer(nn.Module):
residual = hidden_states residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states) hidden_states = self.mlp(hidden_states)
if isinstance(hidden_states, tuple):
hidden_states, router_logits = hidden_states
else:
router_logits = (torch.zeros((1,), device=hidden_states.device, dtype=torch.int64),)
hidden_states = residual + hidden_states hidden_states = residual + hidden_states
outputs = (hidden_states,) outputs = (hidden_states,)
if output_attentions: if output_attentions:
outputs += (self_attn_weights,) outputs += (self_attn_weights,)
if output_router_logits:
outputs += (router_logits,) if use_cache:
outputs += (present_key_value,)
return outputs return outputs
DEEPSEEK_V3_START_DOCSTRING = r""" DeepseekV3_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.) etc.)
...@@ -511,21 +1250,16 @@ DEEPSEEK_V3_START_DOCSTRING = r""" ...@@ -511,21 +1250,16 @@ DEEPSEEK_V3_START_DOCSTRING = r"""
@add_start_docstrings( @add_start_docstrings(
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
DEEPSEEK_V3_START_DOCSTRING, DeepseekV3_START_DOCSTRING,
) )
class DeepseekV3PreTrainedModel(PreTrainedModel): class DeepseekV3PreTrainedModel(PreTrainedModel):
config_class = DeepseekV3Config config_class = DeepseekV3Config
base_model_prefix = "model" base_model_prefix = "model"
supports_gradient_checkpointing = True supports_gradient_checkpointing = True
_no_split_modules = ["DeepseekV3DecoderLayer"] _no_split_modules = ["DeepseekV3DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"] _skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True _supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True _supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module): def _init_weights(self, module):
std = self.config.initializer_range std = self.config.initializer_range
...@@ -539,7 +1273,7 @@ class DeepseekV3PreTrainedModel(PreTrainedModel): ...@@ -539,7 +1273,7 @@ class DeepseekV3PreTrainedModel(PreTrainedModel):
module.weight.data[module.padding_idx].zero_() module.weight.data[module.padding_idx].zero_()
DEEPSEEK_V3_INPUTS_DOCSTRING = r""" DeepseekV3_INPUTS_DOCSTRING = r"""
Args: Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
...@@ -580,8 +1314,7 @@ DEEPSEEK_V3_INPUTS_DOCSTRING = r""" ...@@ -580,8 +1314,7 @@ DEEPSEEK_V3_INPUTS_DOCSTRING = r"""
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed: Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our - a [`~cache_utils.Cache`] instance;
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format. cache format.
...@@ -607,16 +1340,12 @@ DEEPSEEK_V3_INPUTS_DOCSTRING = r""" ...@@ -607,16 +1340,12 @@ DEEPSEEK_V3_INPUTS_DOCSTRING = r"""
more detail. more detail.
return_dict (`bool`, *optional*): return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
""" """
@add_start_docstrings( @add_start_docstrings(
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
DEEPSEEK_V3_START_DOCSTRING, DeepseekV3_START_DOCSTRING,
) )
class DeepseekV3Model(DeepseekV3PreTrainedModel): class DeepseekV3Model(DeepseekV3PreTrainedModel):
""" """
...@@ -626,20 +1355,24 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel): ...@@ -626,20 +1355,24 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
config: DeepseekV3Config config: DeepseekV3Config
""" """
def __init__(self, config): def __init__(self, config: DeepseekV3Config):
super().__init__(config) super().__init__(config)
self.padding_idx = config.pad_token_id self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList( self.layers = nn.ModuleList(
[DeepseekV3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] [
DeepseekV3DecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
) )
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = DeepseekV3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
self._register_load_state_dict_pre_hook(self.load_hook)
self.gradient_checkpointing = False
# Initialize weights and apply final processing # Initialize weights and apply final processing
self.post_init() self.post_init()
...@@ -649,96 +1382,111 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel): ...@@ -649,96 +1382,111 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
def set_input_embeddings(self, value): def set_input_embeddings(self, value):
self.embed_tokens = value self.embed_tokens = value
@add_start_docstrings_to_model_forward(DEEPSEEK_V3_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None, output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs# : Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]: ) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
) )
use_cache = use_cache if use_cache is not None else self.config.use_cache use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache: return_dict = (
logger.warning_once( return_dict if return_dict is not None else self.config.use_return_dict
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
) )
use_cache = False
if inputs_embeds is None: # retrieve input_ids and inputs_embeds
inputs_embeds = self.embed_tokens(input_ids) if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if use_cache and past_key_values is None: past_key_values_length = 0
past_key_values = DynamicCache() if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if cache_position is None: if position_ids is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 device = input_ids.device if input_ids is not None else inputs_embeds.device
cache_position = torch.arange( position_ids = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
) )
position_ids = position_ids.unsqueeze(0)
if position_ids is None: if inputs_embeds is None:
position_ids = cache_position.unsqueeze(0) inputs_embeds = self.embed_tokens(input_ids)
causal_mask = self._update_causal_mask( if self._use_flash_attention_2:
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions # 2d mask is passed through the layers
attention_mask = (
attention_mask
if (attention_mask is not None and 0 in attention_mask)
else None
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
) )
# embed positions
hidden_states = inputs_embeds hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers # decoder layers
all_hidden_states = () if output_hidden_states else None all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers[: self.config.num_hidden_layers]: for decoder_layer in self.layers:
if output_hidden_states: if output_hidden_states:
all_hidden_states += (hidden_states,) all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer( layer_outputs = decoder_layer(
hidden_states, hidden_states,
attention_mask=causal_mask, attention_mask=attention_mask,
position_ids=position_ids, position_ids=position_ids,
past_key_value=past_key_values, past_key_value=past_key_values,
output_attentions=output_attentions, output_attentions=output_attentions,
use_cache=use_cache, use_cache=use_cache,
cache_position=cache_position, cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
) )
hidden_states = layer_outputs[0] hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions: if output_attentions:
all_self_attns += (layer_outputs[1],) all_self_attns += (layer_outputs[1],)
...@@ -748,14 +1496,27 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel): ...@@ -748,14 +1496,27 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
if output_hidden_states: if output_hidden_states:
all_hidden_states += (hidden_states,) all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast( next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache()
if use_legacy_cache
else next_decoder_cache
)
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states, last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None, past_key_values=next_cache,
hidden_states=all_hidden_states, hidden_states=all_hidden_states,
attentions=all_self_attns, attentions=all_self_attns,
) )
return output if return_dict else output.to_tuple()
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask( def _update_causal_mask(
self, self,
attention_mask: torch.Tensor, attention_mask: torch.Tensor,
...@@ -764,8 +1525,13 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel): ...@@ -764,8 +1525,13 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
past_key_values: Cache, past_key_values: Cache,
output_attentions: bool, output_attentions: bool,
): ):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
if self.config._attn_implementation == "flash_attention_2": if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any(): if attention_mask is not None and 0.0 in attention_mask:
return attention_mask return attention_mask
return None return None
...@@ -786,6 +1552,7 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel): ...@@ -786,6 +1552,7 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
return None return None
dtype, device = input_tensor.dtype, input_tensor.device dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1] sequence_length = input_tensor.shape[1]
if using_static_cache: if using_static_cache:
target_length = past_key_values.get_max_length() target_length = past_key_values.get_max_length()
...@@ -796,76 +1563,19 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel): ...@@ -796,76 +1563,19 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
else past_seen_tokens + sequence_length + 1 else past_seen_tokens + sequence_length + 1
) )
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4: if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
if attention_mask.max() != 0:
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
causal_mask = attention_mask causal_mask = attention_mask
else: else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full( causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
) )
if sequence_length != 1: if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None: if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1] mask_length = attention_mask.shape[-1]
...@@ -874,59 +1584,21 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel): ...@@ -874,59 +1584,21 @@ class DeepseekV3Model(DeepseekV3PreTrainedModel):
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype padding_mask, min_dtype
) )
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask return causal_mask
def load_hook(self, state_dict, prefix, *args): class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
"""
Weights have to be permuted for correct rope formulation. We can't do this in the weights
as every other framework already uses the `Llama` original function (which is copyrighted btw).
And I am not even sure it's better.... anyways end of my rant
"""
def permute_for_rope(input_tensor):
"""
When you go from the complex ROPE formulation to sin and cos one, you need
to permute the query and key weights (to avoid doing it on the fly)
"""
n_heads, dim1, dim2 = input_tensor.shape[0], input_tensor.shape[1], input_tensor.shape[2]
input_tensor = input_tensor.reshape(n_heads * dim1, dim2)
input_tensor = input_tensor.view(n_heads, dim1 // 2, 2, dim2)
input_tensor = input_tensor.transpose(1, 2).reshape(n_heads, dim1, dim2)
return input_tensor
def permute_layer_for_rope(key, num_heads, head_dim, rope_dim):
weight = state_dict[key]
weight = weight.view(num_heads, head_dim, -1)
weight_rot = weight[:, -rope_dim:]
weight_rot = permute_for_rope(weight_rot)
weight[:, -rope_dim:] = weight_rot
weight = weight.view(-1, weight.shape[-1])
state_dict[key] = weight
for k in state_dict:
if "q_b_proj." in k:
permute_layer_for_rope(
k,
num_heads=self.config.num_attention_heads,
head_dim=self.config.q_head_dim,
rope_dim=self.config.qk_rope_head_dim,
)
if "kv_a_proj_with_mqa." in k:
permute_layer_for_rope(
k,
num_heads=1,
head_dim=self.config.kv_lora_rank + self.config.qk_rope_head_dim,
rope_dim=self.config.qk_rope_head_dim,
)
# class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"] _tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config): def __init__(self, config):
super().__init__(config) super().__init__(config)
...@@ -955,15 +1627,16 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): ...@@ -955,15 +1627,16 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
def get_decoder(self): def get_decoder(self):
return self.model return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
@add_start_docstrings_to_model_forward(DEEPSEEK_V3_INPUTS_DOCSTRING) @replace_return_docstrings(
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
)
def forward( def forward(
self, self,
input_ids: torch.LongTensor = None, input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
...@@ -971,22 +1644,13 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): ...@@ -971,22 +1644,13 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
output_hidden_states: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None, return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs# : Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]: ) -> Union[Tuple, CausalLMOutputWithPast]:
r""" r"""
Args: Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns: Returns:
...@@ -995,8 +1659,8 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): ...@@ -995,8 +1659,8 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
```python ```python
>>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
>>> model = DeepseekV3ForCausalLM.from_pretrained("meta-deepseek_v3/DeepseekV3-2-7b-hf") >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained("meta-deepseek_v3/DeepseekV3-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?" >>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt") >>> inputs = tokenizer(prompt, return_tensors="pt")
...@@ -1006,11 +1670,19 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): ...@@ -1006,11 +1670,19 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```""" ```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = ( output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
) )
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model( outputs = self.model(
...@@ -1024,17 +1696,24 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): ...@@ -1024,17 +1696,24 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
output_hidden_states=output_hidden_states, output_hidden_states=output_hidden_states,
return_dict=return_dict, return_dict=return_dict,
cache_position=cache_position, cache_position=cache_position,
**kwargs,
) )
hidden_states = outputs[0] hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = logits.float()
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None loss = None
if labels is not None: if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) # Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict: if not return_dict:
output = (logits,) + outputs[1:] output = (logits,) + outputs[1:]
...@@ -1048,6 +1727,82 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): ...@@ -1048,6 +1727,82 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
attentions=outputs.attentions, attentions=outputs.attentions,
) )
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if (
attention_mask is not None
and attention_mask.shape[1] > input_ids.shape[1]
):
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
),
)
return reordered_past
@add_start_docstrings( @add_start_docstrings(
""" """
...@@ -1062,7 +1817,7 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): ...@@ -1062,7 +1817,7 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin):
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch). each row of the batch).
""", """,
DEEPSEEK_V3_START_DOCSTRING, DeepseekV3_START_DOCSTRING,
) )
class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel): class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
def __init__(self, config): def __init__(self, config):
...@@ -1080,13 +1835,13 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel): ...@@ -1080,13 +1835,13 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
def set_input_embeddings(self, value): def set_input_embeddings(self, value):
self.model.embed_tokens = value self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(DEEPSEEK_V3_INPUTS_DOCSTRING) @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
def forward( def forward(
self, self,
input_ids: Optional[torch.LongTensor] = None, input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None, use_cache: Optional[bool] = None,
...@@ -1096,11 +1851,13 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel): ...@@ -1096,11 +1851,13 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
) -> Union[Tuple, SequenceClassifierOutputWithPast]: ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r""" r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
""" """
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.model( transformer_outputs = self.model(
input_ids, input_ids,
...@@ -1122,24 +1879,50 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel): ...@@ -1122,24 +1879,50 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
batch_size = inputs_embeds.shape[0] batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1: if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") raise ValueError(
"Cannot handle batch sizes > 1 if no padding token is defined."
)
if self.config.pad_token_id is None: if self.config.pad_token_id is None:
sequence_lengths = -1 sequence_lengths = -1
else: else:
if input_ids is not None: if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = (
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1] ).to(logits.device)
sequence_lengths = sequence_lengths.to(logits.device)
else: else:
sequence_lengths = -1 sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] pooled_logits = logits[
torch.arange(batch_size, device=logits.device), sequence_lengths
]
loss = None loss = None
if labels is not None: if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(
pooled_logits.view(-1, self.num_labels), labels.view(-1)
)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict: if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:] output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output return ((loss,) + output) if loss is not None else output
...@@ -1151,11 +1934,3 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel): ...@@ -1151,11 +1934,3 @@ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
hidden_states=transformer_outputs.hidden_states, hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions, attentions=transformer_outputs.attentions,
) )
\ No newline at end of file
__all__ = [
"DeepseekV3PreTrainedModel",
"DeepseekV3Model",
"DeepseekV3ForCausalLM",
"DeepseekV3ForSequenceClassification",
]
\ No newline at end of file
...@@ -23,7 +23,7 @@ from ktransformers.operators.base_operator import BaseInjectedModule ...@@ -23,7 +23,7 @@ from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_gguf import GGUFLoader from ktransformers.util.custom_gguf import GGUFLoader
from ktransformers.util.utils import InferenceState from ktransformers.util.utils import InferenceState
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
import torch
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe # Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe
class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding): class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
...@@ -56,6 +56,57 @@ class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding): ...@@ -56,6 +56,57 @@ class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
) )
class RotaryEmbeddingV3(BaseInjectedModule):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
)
self.generate_device = generate_device
self.prefill_device = prefill_device
@torch.no_grad()
def forward(self, x, position_ids):
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def load(self):
self._init(
dim=self.config.qk_rope_head_dim,
max_position_embeddings=self.config.max_position_embeddings,
base=self.config.rope_theta,
device=self.device,
)
def _init(self, dim, max_position_embeddings, base, device, scaling_factor=1.0):
self.scaling_factor = scaling_factor
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
# self.register_buffer("inv_freq", inv_freq, persistent=False)
# For BC we register cos and sin cached
self.max_seq_len_cached = max_position_embeddings
class RotaryEmbeddingV2(BaseInjectedModule, LlamaRotaryEmbedding): class RotaryEmbeddingV2(BaseInjectedModule, LlamaRotaryEmbedding):
def __init__( def __init__(
self, self,
......
...@@ -151,7 +151,7 @@ class KDeepseekV3Attention(BaseInjectedModule, DeepseekV3Attention): ...@@ -151,7 +151,7 @@ class KDeepseekV3Attention(BaseInjectedModule, DeepseekV3Attention):
attn_output = self.o_proj(attn_output) attn_output = self.o_proj(attn_output)
return attn_output, attn_weights return attn_output, attn_weights, past_key_value
def forward( def forward(
self, self,
...@@ -220,7 +220,7 @@ class KDeepseekV3Attention(BaseInjectedModule, DeepseekV3Attention): ...@@ -220,7 +220,7 @@ class KDeepseekV3Attention(BaseInjectedModule, DeepseekV3Attention):
attn_output = torch.cat((attn_output, cur_output), dim=-2) attn_output = torch.cat((attn_output, cur_output), dim=-2)
attn_weight = torch.cat((attn_weight, cur_attn_weight), dim=-2) attn_weight = torch.cat((attn_weight, cur_attn_weight), dim=-2)
return attn_output, attn_weight return attn_output, attn_weight, past_key_value
class KDeepseekV2Attention(BaseInjectedModule, DeepseekV2Attention): class KDeepseekV2Attention(BaseInjectedModule, DeepseekV2Attention):
"""Multi-headed attention from 'Attention Is All You Need' paper""" """Multi-headed attention from 'Attention Is All You Need' paper"""
......
...@@ -734,7 +734,7 @@ class KDeepseekV3MoE(BaseInjectedModule, DeepseekV3MoE): ...@@ -734,7 +734,7 @@ class KDeepseekV3MoE(BaseInjectedModule, DeepseekV3MoE):
identity = hidden_states identity = hidden_states
orig_shape = hidden_states.shape orig_shape = hidden_states.shape
sequence_length = orig_shape[1] sequence_length = orig_shape[1]
topk_idx, topk_weight, router_logits= self.gate(hidden_states) topk_idx, topk_weight = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
# only for generate phase # only for generate phase
...@@ -745,7 +745,7 @@ class KDeepseekV3MoE(BaseInjectedModule, DeepseekV3MoE): ...@@ -745,7 +745,7 @@ class KDeepseekV3MoE(BaseInjectedModule, DeepseekV3MoE):
y = self.experts.generate_experts.sync_for_one_decode().unsqueeze(0) y = self.experts.generate_experts.sync_for_one_decode().unsqueeze(0)
y += y_ y += y_
y.resize_(*orig_shape) y.resize_(*orig_shape)
return y, router_logits return y
if self.config.n_shared_experts is not None: if self.config.n_shared_experts is not None:
y_ = self.shared_experts(identity).squeeze(0) y_ = self.shared_experts(identity).squeeze(0)
...@@ -768,7 +768,7 @@ class KDeepseekV3MoE(BaseInjectedModule, DeepseekV3MoE): ...@@ -768,7 +768,7 @@ class KDeepseekV3MoE(BaseInjectedModule, DeepseekV3MoE):
) )
if self.config.n_shared_experts is not None: if self.config.n_shared_experts is not None:
y += y_ y += y_
return y, router_logits return y
@torch.no_grad() @torch.no_grad()
def moe_on_cpuinfer(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor: def moe_on_cpuinfer(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
......
...@@ -16,9 +16,6 @@ from cpuinfer_ext.moe import MOEConfig, MOE ...@@ -16,9 +16,6 @@ from cpuinfer_ext.moe import MOEConfig, MOE
import ctypes import ctypes
from ktransformers.operators.base_operator import BaseInjectedModule from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_gguf import GGUFLoader from ktransformers.util.custom_gguf import GGUFLoader
from ktransformers.models.modeling_deepseek_v3 import DeepseekV3TopkRouter
from ktransformers.util.utils import InferenceState
from ktransformers.server.config.config import Config
from transformers.activations import ACT2FN from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig from transformers.configuration_utils import PretrainedConfig
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
...@@ -102,6 +99,8 @@ class KMoEGate(BaseInjectedModule, KMoEGateBase): ...@@ -102,6 +99,8 @@ class KMoEGate(BaseInjectedModule, KMoEGateBase):
): ):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs) BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
KMoEGateBase.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs) KMoEGateBase.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
self.generate_device = generate_device
self.prefill_device = prefill_device
def forward(self, hidden_states) -> torch.Tensor: def forward(self, hidden_states) -> torch.Tensor:
return self.orig_module.forward(hidden_states) return self.orig_module.forward(hidden_states)
......
...@@ -626,6 +626,13 @@ class KDeepseekV2Model(BaseInjectedModule): ...@@ -626,6 +626,13 @@ class KDeepseekV2Model(BaseInjectedModule):
past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length) past_key_values_length = past_key_values.get_usable_length(seq_length)
if inputs_embeds is None:
org_device = input_ids.device
# TODO move to embed_tokens's device, not hard code to cpu
input_ids = input_ids.to("cpu")
inputs_embeds = self.embed_tokens(input_ids).to(org_device)
input_ids = input_ids.to(org_device)
if cache_position is None: if cache_position is None:
past_seen_tokens = ( past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0 past_key_values.get_seq_length() if past_key_values is not None else 0
...@@ -639,13 +646,6 @@ class KDeepseekV2Model(BaseInjectedModule): ...@@ -639,13 +646,6 @@ class KDeepseekV2Model(BaseInjectedModule):
if position_ids is None: if position_ids is None:
position_ids = cache_position.unsqueeze(0) position_ids = cache_position.unsqueeze(0)
if inputs_embeds is None:
org_device = input_ids.device
# TODO move to embed_tokens's device, not hard code to cpu
input_ids = input_ids.to("cpu")
inputs_embeds = self.embed_tokens(input_ids).to(org_device)
input_ids = input_ids.to(org_device)
if per_layer_prefill_flag: if per_layer_prefill_flag:
causal_mask = None causal_mask = None
else: else:
...@@ -717,6 +717,8 @@ class KDeepseekV2Model(BaseInjectedModule): ...@@ -717,6 +717,8 @@ class KDeepseekV2Model(BaseInjectedModule):
self.load_layer_to(decoder_layer, InferenceState.PREFILL) self.load_layer_to(decoder_layer, InferenceState.PREFILL)
torch.cuda.empty_cache() torch.cuda.empty_cache()
t4 = time.time() t4 = time.time()
# with open("log.txt", "a") as f:
# f.write(f"@@@@@@@@@@@@@@@@@layer {i}@@@@@@@@@@@@@@@@@@@@ \n")
layer_outputs = decoder_layer( layer_outputs = decoder_layer(
hidden_states, hidden_states,
attention_mask=causal_mask, attention_mask=causal_mask,
...@@ -739,13 +741,17 @@ class KDeepseekV2Model(BaseInjectedModule): ...@@ -739,13 +741,17 @@ class KDeepseekV2Model(BaseInjectedModule):
hidden_states = layer_outputs[0] hidden_states = layer_outputs[0]
# @@@@@@@ TODO open this notes, tmp close to fit deepseekv3 # @@@@@@@ TODO open this notes, tmp close to fit deepseekv3
# if use_cache: if use_cache:
# next_decoder_cache = layer_outputs[2 if output_attentions else 1] next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions: if output_attentions:
all_self_attns += (layer_outputs[1],) all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states) hidden_states = self.norm(hidden_states)
# with open("log.txt", "a") as f:
# f.write(f"@@@After layers\n")
# f.write(f"hidden_states={hidden_states}\n")
# f.write(f"hidden_states.shape={hidden_states.shape}\n")
if per_layer_prefill_flag: if per_layer_prefill_flag:
t6 = time.time() t6 = time.time()
......
...@@ -10,7 +10,7 @@ ...@@ -10,7 +10,7 @@
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\." name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace: replace:
class: ktransformers.operators.RoPE.DeepSeekV3YarnRotaryEmbedding class: ktransformers.operators.RoPE.RotaryEmbeddingV3
kwargs: kwargs:
generate_device: "cuda:0" generate_device: "cuda:0"
prefill_device: "cuda:0" prefill_device: "cuda:0"
...@@ -18,7 +18,7 @@ ...@@ -18,7 +18,7 @@
name: "^model\\.layers\\.([3456][0-9])\\." name: "^model\\.layers\\.([3456][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace: replace:
class: ktransformers.operators.RoPE.DeepSeekV3YarnRotaryEmbedding class: ktransformers.operators.RoPE.RotaryEmbeddingV3
kwargs: kwargs:
generate_device: "cuda:1" generate_device: "cuda:1"
prefill_device: "cuda:1" prefill_device: "cuda:1"
...@@ -64,7 +64,7 @@ ...@@ -64,7 +64,7 @@
- match: - match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$" name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3TopkRouter class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace: replace:
class: ktransformers.operators.gate.KMoEGate class: ktransformers.operators.gate.KMoEGate
kwargs: kwargs:
...@@ -72,7 +72,7 @@ ...@@ -72,7 +72,7 @@
prefill_device: "cuda:0" prefill_device: "cuda:0"
- match: - match:
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$" name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3TopkRouter class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace: replace:
class: ktransformers.operators.gate.KMoEGate # mlp module with custom forward function class: ktransformers.operators.gate.KMoEGate # mlp module with custom forward function
kwargs: kwargs:
...@@ -106,14 +106,14 @@ ...@@ -106,14 +106,14 @@
- match: - match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$" name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$"
replace: replace:
class: ktransformers.operators.attention.KDeepseekV3Attention # optimized MLA implementation class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs: kwargs:
generate_device: "cuda:0" generate_device: "cuda:0"
prefill_device: "cuda:0" prefill_device: "cuda:0"
- match: - match:
name: "^model\\.layers\\.([3456][0-9])\\.self_attn$" name: "^model\\.layers\\.([3456][0-9])\\.self_attn$"
replace: replace:
class: ktransformers.operators.attention.KDeepseekV3Attention # optimized MLA implementation class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs: kwargs:
generate_device: "cuda:1" generate_device: "cuda:1"
prefill_device: "cuda:1" prefill_device: "cuda:1"
......
...@@ -24,7 +24,7 @@ class KTransformersInterface(TransformersInterface): ...@@ -24,7 +24,7 @@ class KTransformersInterface(TransformersInterface):
self.args = args self.args = args
torch.set_default_dtype(torch.bfloat16) torch.set_default_dtype(torch.bfloat16)
torch.set_grad_enabled(False) torch.set_grad_enabled(False)
self.tokenizer = AutoTokenizer.from_pretrained(args.model_dir, device=args.device) self.tokenizer = AutoTokenizer.from_pretrained(args.model_dir, device=args.device, trust_remote_code=True)
config = AutoConfig.from_pretrained(args.model_dir, trust_remote_code=True) config = AutoConfig.from_pretrained(args.model_dir, trust_remote_code=True)
if config.architectures[0] == "Qwen2MoeForCausalLM": if config.architectures[0] == "Qwen2MoeForCausalLM":
config._attn_implementation = "flash_attention_2" config._attn_implementation = "flash_attention_2"
...@@ -99,7 +99,7 @@ class KTransformersInterface(TransformersInterface): ...@@ -99,7 +99,7 @@ class KTransformersInterface(TransformersInterface):
if self.use_static_cache: if self.use_static_cache:
mask = torch.ones((1, self.seq_length)).to(torch_device) mask = torch.ones((1, self.seq_length)).to(torch_device)
logits = self.model( logits = self.model(
self.current_ids, self.current_ids.to(torch_device),
cache_position=self.active_cache_position, cache_position=self.active_cache_position,
past_key_values=self.cache, past_key_values=self.cache,
attention_mask=mask, attention_mask=mask,
......
...@@ -198,7 +198,7 @@ class TransformersInterface(BackendInterfaceBase): ...@@ -198,7 +198,7 @@ class TransformersInterface(BackendInterfaceBase):
return self.streamer.put(new_tokens) return self.streamer.put(new_tokens)
def logits_to_token(self, logits: torch.Tensor): def logits_to_token(self, logits: torch.Tensor):
logits = logits / self.args.temperature logits = logits / self.args.temperature if self.args.temperature!=0 else logits
for token_idx in self.ever_generated_ids: for token_idx in self.ever_generated_ids:
if logits[token_idx] < 0: if logits[token_idx] < 0:
...@@ -318,7 +318,9 @@ class TransformersInterface(BackendInterfaceBase): ...@@ -318,7 +318,9 @@ class TransformersInterface(BackendInterfaceBase):
if isinstance(local_messages, List): if isinstance(local_messages, List):
input_ids = self.format_and_tokenize_input_ids(thread_id, local_messages) input_ids = self.format_and_tokenize_input_ids(thread_id, local_messages)
elif isinstance(local_messages, str): elif isinstance(local_messages, str):
#local_messages = local_messages[0]['content']
input_ids = self.tokenize_prompt(local_messages) input_ids = self.tokenize_prompt(local_messages)
#input_ids = torch.tensor([[6366]], device=input_ids.device)
else: else:
raise ValueError("local_messages should be List or str") raise ValueError("local_messages should be List or str")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment