Unverified Commit 8333a4d8 authored by Azure's avatar Azure Committed by GitHub
Browse files

Merge pull request #663 from kvcache-ai/develop-0.2.2

[release]  Release 0.2.2rc.
parents 7b2a6690 c6e4e1c3
......@@ -56,7 +56,7 @@ from ktransformers.models.modeling_deepseek import (
from transformers.models.qwen2_moe.configuration_qwen2_moe import Qwen2MoeConfig
from ktransformers.models.configuration_llama import LlamaConfig
from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.utils import InferenceState
from ktransformers.util.utils import InferenceState, get_compute_capability
from ktransformers.util.custom_gguf import GGUFLoader
from transformers.configuration_utils import PretrainedConfig
from ktransformers.models.modeling_llama import (
......@@ -649,9 +649,14 @@ class KDeepseekV2Model(BaseInjectedModule):
if per_layer_prefill_flag:
causal_mask = None
else:
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
if os.name == 'nt' or get_compute_capability()<8:
print("for Windows or GPU before ampere, use forward_windows")
# only use mask in forward windows or can't flash attn
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
else:
causal_mask = None
# embed positions
hidden_states = inputs_embeds
......
- match:
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\.(?!.*self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearFP8"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
\ No newline at end of file
......@@ -293,6 +293,7 @@
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
absorb_for_prefill: False
# GPU 1: layers 15–29
- match:
......@@ -302,6 +303,7 @@
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
absorb_for_prefill: False
# GPU 2: layers 30–44
- match:
......@@ -311,6 +313,7 @@
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
absorb_for_prefill: False
# GPU 3: layers 45–60
- match:
......@@ -320,6 +323,7 @@
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
absorb_for_prefill: False
# === Overall Model Replacement with Transfer Map ===
......
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([3456][0-9])\\."
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearFP8"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([3456][0-9])\\.(?!self_attn\\.kv_b_proj).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearFP8"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([3456][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
replace:
class: ktransformers.operators.experts.KDeepseekV3MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$"
class: ktransformers.models.modeling_deepseek_v3.MoEGate
replace:
class: ktransformers.operators.gate.KMoEGate # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:0"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:1"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:1"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model\\.layers\\.([3456][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
30: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^lm_head"
class: torch.nn.Linear
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "(^model\\.layers\\.([3456][0-9])\\.)|(model.norm)"
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
......@@ -60,6 +60,7 @@
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
absorb_for_prefill: False # change this to True to enable long context(prefill may slower).
- match:
name: "^model$"
replace:
......
......@@ -14,6 +14,7 @@ from ktransformers.models.custom_cache import StaticCache
from ktransformers.util.cuda_graph_runner import CUDAGraphRunner
from ktransformers.local_chat import custom_models, default_optimize_rules
from ktransformers.util.utils import get_device
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled, MLAWrapperSingleton
warm_uped = False
......@@ -35,9 +36,9 @@ class KTransformersInterface(TransformersInterface):
with torch.device("meta"):
self.model = custom_models[config.architectures[0]](config)
if default_args.optimize_config_path is None:
optimize_rule_path = default_optimize_rules[config.architectures[0]]
optimize_config_path = default_optimize_rules[config.architectures[0]]
else:
optimize_rule_path = args.optimize_config_path
optimize_config_path = args.optimize_config_path
# print(optimize_config)
......@@ -47,7 +48,7 @@ class KTransformersInterface(TransformersInterface):
"please input the path of your gguf file(gguf file in the dir containing input gguf file must all"
" belong to current model):"
)
optimize_and_load_gguf(self.model, optimize_rule_path, gguf_path, config)
optimize_and_load_gguf(self.model, optimize_config_path, gguf_path, config)
self.device_map = self.model.gguf_loader.tensor_device_map
# logger.info(f"{args.model_name} loaded from {args.model_dir} to {self.device_map}")
......@@ -186,6 +187,8 @@ class KTransformersInterface(TransformersInterface):
input_ids = input_ids.to("cpu")
inputs_embeds = self.model.model.embed_tokens(input_ids).to(device)
torch.cuda.set_device(device)
if flashinfer_enabled:
MLAWrapperSingleton.need_plan_all()
if self.use_static_cache:
logits = self.model(
inputs_embeds=inputs_embeds,
......@@ -198,6 +201,8 @@ class KTransformersInterface(TransformersInterface):
else:
logits = self.model(inputs_embeds=inputs_embeds, return_dict=False)[0]
if flashinfer_enabled:
MLAWrapperSingleton.reset_buffer()
self.prepare_logits_wrapper(input_ids, device)
next_token = self.logits_to_token(logits[0, -1, :])
yield self.append_new_tokens(next_token)
......
......@@ -333,14 +333,14 @@ class TransformersInterface(BackendInterfaceBase):
for i in range(1, self.args.max_new_tokens):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True):
if i > 1 and flashinfer_enabled:
if flashinfer_enabled:
MLAWrapperSingleton.plan_all(None,None,None,self.active_cache_position.to(torch.int32)+1,
num_heads=self.model.config.num_attention_heads, head_dim_ckv=self.model.config.kv_lora_rank,
head_dim_kpe=self.model.config.qk_rope_head_dim, page_size=self.cache.page_size,
sm_scale=(self.model.config.qk_rope_head_dim + self.model.config.qk_nope_head_dim) ** (-0.5), q_data_type=torch.bfloat16, kv_data_type=torch.bfloat16)
next_token = self.decode_one_tokens()
self.profiler.inc("decode")
if next_token == self.tokenizer.eos_token_id:
if next_token == self.tokenizer.eos_token_id or "<|im_end|>" == self.tokenizer.decode(next_token):
assert self.args.batch_size == 1
break
yield self.append_new_tokens(next_token)
......
......@@ -173,8 +173,8 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser(description="API Generate Tester")
parser.add_argument("--concurrent", type=int, default=1000, help="Number of concurrent evaluations")
parser.add_argument("--file", type=str, default="TIGER-Lab/MMLU-Pro", help="Path to the mmlu.jsonl file")
parser.add_argument("--result", type=str, default="./mmlu_pro.json", help="Path to save the result JSON file")
parser.add_argument("--log", type=str, default="./mmlu_pro.log", help="Path to save the log file")
parser.add_argument("--result", type=str, default="./mmlu_result_pro.json", help="Path to save the result JSON file")
parser.add_argument("--log", type=str, default="./mmlu_result_pro.log", help="Path to save the log file")
parser.add_argument("--model", type=str, default="Pro/deepseek-ai/DeepSeek-V3", help="Model name or path")
parser.add_argument("--api_url", type=str, default="http://localhost:15488/v1/chat/completions", help="API URL")
# parser.add_argument("--api_url", type=str, default="https://api.siliconflow.cn/v1/chat/completions", help="API URL")
......
import torch
import torch.nn.functional as F
from typing import Optional
import pytest
from typing import Tuple, Optional, Literal
import time
# use dir path
import os
import sys
sys.path.insert(0, "/home/azure/ktransformers")
print(sys.path)
from ktransformers.ktransformers_ext.triton.fp8gemm import fp8_gemm, act_quant, weight_dequant
from safetensors import safe_open
world_size = 1
rank = 0
block_size = 128
gemm_impl: Literal["bf16", "fp8"] = "bf16"
# Assuming `fp8_gemm`, `act_quant`, `weight_dequant` and other relevant functions are already defined
def test_fp8_gemm_vs_torch_matmul():
# Test case 1: Create random matrices of size (M, K) and (K, N)
M, K, N = 64, 128, 256 # Matrix dimensions
x = torch.randn(M, K, dtype=torch.bfloat16, device='cuda')
weight = torch.randn(N, K, dtype=torch.bfloat16, device='cuda')
# Apply act_quant to both matrices
x_quantized, scale_x = act_quant(x, block_size)
weight_quantized, scale_w = act_quant(weight, block_size)
# mk continous
x_quantized = x_quantized.contiguous()
weight_quantized = weight_quantized.contiguous()
scale_x = scale_x.contiguous()
scale_w = scale_w.contiguous()
# Perform fp8_gemm using the quantized tensors
result_fp8_gemm = fp8_gemm(x_quantized, scale_x, weight_quantized, scale_w)
# Perform torch.matmul using the original floating point tensors
result_torch_matmul = torch.matmul(x, weight.T)
print(f'result_torch_matmul: {result_torch_matmul.shape}')
print(f'result_fp8_gemm: {result_fp8_gemm.shape}')
print(f"result_fp8_gemm:\n {result_fp8_gemm}")
print(f"result_torch_matmul:\n {result_torch_matmul}")
def test_fp8_gemm_vs_torch_matmul_load():
file_path = "/mnt/data/model/DeepSeek-V3/model-00001-of-000163.safetensors"
with safe_open(file_path, framework="pt", device=0) as f:
weight = f.get_tensor("model.layers.0.mlp.down_proj.weight")
scale = f.get_tensor("model.layers.0.mlp.down_proj.weight_scale_inv")
# weight_dequant
weight_dequantized = weight_dequant(weight, scale)
print(f"weight_dequantized: {weight_dequantized.shape}")
N, K = weight_dequantized.shape
M = 64
x = torch.randn(2 ,M, K, dtype=torch.bfloat16, device='cuda')
x_quantized, scale_x = act_quant(x, block_size)
# Test case 1: quantized x matmal with undequantized weight
result_fp8_gemm = fp8_gemm(x_quantized, scale_x, weight, scale)
print(f"result_fp8_gemm:\n {result_fp8_gemm}")
print(f"dtype {result_fp8_gemm.dtype}")
# Perform torch.matmul using the original floating point tensors
result_torch_matmul = torch.matmul(x, weight_dequantized.to(torch.bfloat16).T)
print(f"result_torch_matmul:\n {result_torch_matmul}")
def test_fp8_gemm_tplops():
file_path = "/mnt/data/model/DeepSeek-V3/model-00001-of-000163.safetensors"
with safe_open(file_path, framework="pt", device=0) as f:
weight = f.get_tensor("model.layers.0.mlp.down_proj.weight")
scale = f.get_tensor("model.layers.0.mlp.down_proj.weight_scale_inv")
# weight_dequant
weight_dequantized = weight_dequant(weight, scale)
print(f"weight_dequantized: {weight_dequantized.shape}")
N, K = weight_dequantized.shape
M = 6400
x = torch.randn(2 ,M, K, dtype=torch.bfloat16, device='cuda')
# x_quantized, scale_x = act_quant(x, block_size)
# Calculate time for 1000 fp8_gemm
i = 10
flops_per_gemm = 2 * M * N * K
total_flops = i * flops_per_gemm
x_quantized, scale_x = act_quant(x, block_size)
result_fp8_gemm = fp8_gemm(x_quantized, scale_x, weight, scale)
x_quantized, scale_x = act_quant(x, block_size)
result_fp8_gemm = fp8_gemm(x_quantized, scale_x, weight, scale)
t0 = time.time()
torch.cuda.synchronize()
for i in range(i):
x_quantized, scale_x = act_quant(x, block_size)
result_fp8_gemm = fp8_gemm(x_quantized, scale_x, weight, scale)
torch.cuda.synchronize()
t1 = time.time()
total_time = t1 - t0
tflops = total_flops / total_time / 1e12
print(f"total_time: {total_time}")
print(f"tflops: {tflops}")
if __name__ == "__main__":
test_fp8_gemm_vs_torch_matmul()
test_fp8_gemm_vs_torch_matmul_load()
test_fp8_gemm_tplops()
\ No newline at end of file
......@@ -25,6 +25,7 @@ import os
from enum import IntEnum
import torch
import KTransformersOps
from .custom_loader import SafeTensorLoader
import ctypes
class GGMLQuantizationType(IntEnum):
......@@ -128,6 +129,7 @@ GGML_BLOCK_SIZES = {
"Q5_K": 2 + 2 + 12 + 256 // 8 + 256 // 2,
"Q6_K": 256 // 2 + 256 // 4 + 256 // 16 + 2,
"IQ4_XS": 2 + 2 + 256 // 2 + 256 // 64,
"FP8": 1,
}
GGML_ELEMENTS_PER_BLOCK = {
......@@ -143,6 +145,7 @@ GGML_ELEMENTS_PER_BLOCK = {
"Q5_K": 256,
"Q6_K": 256,
"IQ4_XS": 256,
"FP8": 1,
}
DATA_TYPES = {
......@@ -159,6 +162,7 @@ DATA_TYPES = {
"uint64": 10,
"int64": 11,
"float64": 12,
"FP8": 13,
}
class GGUFLoader:
......@@ -166,12 +170,15 @@ class GGUFLoader:
gguf_path: str
tensor_file_map: dict # {tensor_name: tensor_file_path}
gguf_file_meta: dict
safetensor_loader: SafeTensorLoader
def __init__(self, gguf_path: str):
# Check dir exist
if not os.path.exists(gguf_path):
raise FileNotFoundError(f"GGUF dir not found: {gguf_path}")
if os.path.isfile(gguf_path):
gguf_path = os.path.dirname(gguf_path)
self.safetensor_loader = None
self.tensor_info = {}
self.gguf_path = gguf_path
......@@ -179,7 +186,13 @@ class GGUFLoader:
self.file_data_map = {}
self.gguf_file_meta = {}
self.tensor_device_map = {}
# I know this is ugly, but I don't want to change the original code too much
# TODO: merge gguf load and other loads.
safetensor_loader = SafeTensorLoader(gguf_path)
if safetensor_loader.tensor_file_map:
self.safetensor_loader = safetensor_loader
return
# Walk through all the .gguf files in the directory
found_gguf = False
for root, dirs, files in os.walk(gguf_path):
......@@ -286,6 +299,13 @@ class GGUFLoader:
itemsize = int(np.empty([], dtype = item_type).itemsize)
return mmap_data[offset : offset + itemsize * item_count]
def get_undequanted_tensor_and_ggml_type(self, name):
t = self.tensor_info[name]
data = self.get_mmap_tensor(name)
ggml_type = t["ggml_type"]
data = torch.from_numpy(data)
return data, ggml_type
def load_expert_tensor(self, name, data, expert_id, elements_per_expert, device = "cuda", target_dtype = torch.get_default_dtype())->torch.Tensor:
t = self.tensor_info[name]
if device.lower() == "cpu":
......@@ -420,6 +440,9 @@ def read_value(f, data_type):
elem_type, count = struct.unpack("<IQ", f.read(4 + 8))
return [read_value(f, elem_type) for _ in range(count)]
elif data_type == DATA_TYPES["FP8"]:
return struct.unpack("<B", f.read(1))[0]
else:
raise NotImplementedError(f"Data type {data_type} not implemented")
......
import struct
import warnings
import numpy as np
import re
import numpy.typing as npt
from typing import Sequence
import os
from enum import IntEnum
import torch
import KTransformersOps
from safetensors import safe_open
from ktransformers.ktransformers_ext.triton.fp8gemm import fp8_gemm, act_quant, weight_dequant
from safetensors.torch import save_file
class SafeTensorLoader:
tensor_file_map = {}
tensor_type_map = {}
file_handle_map = {}
def __init__(self, file_path: str):
self.__load_tensor_file_map(file_path)
def __load_tensor_file_map(self, file_path: str):
# 处理传入路径,确保是文件夹路径
if not os.path.exists(file_path):
raise FileNotFoundError(f"Path not found: {file_path}")
if os.path.isfile(file_path):
folder_path = os.path.dirname(file_path)
else:
folder_path = file_path
found_safetensor = False
for root, _, files in os.walk(folder_path):
files = sorted(files)
for file in files:
if file.endswith(".safetensors"):
found_safetensor = True
file_path = os.path.join(root, file)
if file not in self.file_handle_map:
try:
handle = safe_open(file_path, framework="pt")
self.file_handle_map[file] = handle
except Exception as e:
print(f"Error opening Safetensor file {file_path}: {e}")
continue
f = self.file_handle_map.get(file)
if f is None:
continue
try:
for key in f.keys():
self.tensor_file_map[key] = file
except Exception as e:
print(f"Error reading Safetensor file {file_path}: {e}")
# if not found_safetensor:
# raise FileNotFoundError(f"No Safetensor files found in {folder_path}")
def load_tensor(self, key: str, device: str="cpu"):
if key not in self.tensor_file_map:
raise KeyError(f"Key {key} not found in Safetensor files")
file = self.tensor_file_map[key]
f = self.file_handle_map.get(file)
if f is None:
raise FileNotFoundError(f"File {file} not found in Safetensor files")
tensor = f.get_tensor(key)
return tensor.to(device)
def close_all_handles(self):
for handle in self.file_handle_map.values():
handle.close()
self.file_handle_map.clear()
def load_dequantized_tensor(self, key:str, device: str="cpu"):
if key not in self.tensor_file_map:
raise KeyError(f"Key {key} not found in Safetensor files")
file = self.tensor_file_map[key]
f = self.file_handle_map.get(file)
if f is None:
raise FileNotFoundError(f"File {file} not found in Safetensor files")
tensor = f.get_tensor(key).to(device)
if key.endswith(".weight"):
if key[:-7] + ".weight_scale_inv" in self.tensor_file_map:
weight_scale_inv = f.get_tensor(key[:-7] + ".weight_scale_inv").to(device)
tensor = weight_dequant(tensor, weight_scale_inv)
return tensor.to(device)
\ No newline at end of file
......@@ -21,6 +21,18 @@ from ktransformers.operators.flashinfer_wrapper import MLAWrapperSingleton
warm_uped = False
def get_compute_capability(device:torch.device = None):
if torch.cuda.is_available():
if device is None:
num_gpus = torch.cuda.device_count()
min_compute_capability_major = 100
for gpu_id in range(num_gpus):
gpu_props = torch.cuda.get_device_properties(gpu_id)
min_compute_capability_major = min(min_compute_capability_major, gpu_props.major)
return min_compute_capability_major
else:
return torch.cuda.get_device_properties(device)
def set_module(model, submodule_key, module):
tokens = submodule_key.split('.')
sub_tokens = tokens[:-1]
......@@ -66,12 +78,23 @@ def load_cur_state_dict(module: nn.Module, gguf_loader: GGUFLoader, prefix: str
for name, param in local_state.items():
key = prefix + name
translated_key = translate_name_to_gguf(key)
if translated_key in gguf_loader.tensor_file_map:
# TODO: Merge all loader.
# I know this is ugly but lets do it for now.
if gguf_loader.safetensor_loader is not None:
load_dequantized_tensor = gguf_loader.safetensor_loader.load_dequantized_tensor
tensor_file_map = gguf_loader.safetensor_loader.tensor_file_map
else:
load_dequantized_tensor = gguf_loader.load_gguf_tensor
tensor_file_map = gguf_loader.tensor_file_map
if translated_key in tensor_file_map:
target_dtype = torch.get_default_dtype()
device = get_device(translated_key[:translated_key.rfind(".")], gguf_loader.tensor_device_map)
print(f"loading {translated_key} to {device}")
# device = "cpu" if "embd" in translated_key else "cuda"
weights = gguf_loader.load_gguf_tensor(translated_key, device = device).to(dtype = target_dtype)
torch.cuda.empty_cache() # To fit in 16G VRAM. By "wkGCaSS - 知乎 https://zhuanlan.zhihu.com/p/25491611225"
# weights = gguf_loader.load_gguf_tensor(translated_key, device = device).to(dtype = target_dtype)
weights = load_dequantized_tensor(translated_key, device=device).to(dtype=target_dtype)
set_param(module, name, weights)
del weights
else:
......@@ -153,6 +176,10 @@ def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000, use_cud
inputs_embeds = model.model.embed_tokens(inputs.to("cpu"))
else:
inputs_embeds = model.model.embed_tokens(inputs.to("cpu")).to(torch_device)
if use_flashinfer_mla:
MLAWrapperSingleton.update_buffer(past_key_values.max_pages)
MLAWrapperSingleton.need_plan_all()
logits = model(
inputs_embeds = inputs_embeds, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True
)[0][:,-1,:].unsqueeze(0).clone().to(torch_device)
......@@ -175,6 +202,9 @@ def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000, use_cud
else:
next_token = torch.argmax(next_token_scores, dim=-1)
first_token_time = time.time() - start_time
if use_flashinfer_mla:
MLAWrapperSingleton.reset_buffer()
prefill_count = seq_length
prefill_time = first_token_time
......@@ -192,15 +222,15 @@ def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000, use_cud
start_time = time.time()
for i in range(1, max_new_tokens):
if use_flashinfer_mla:
MLAWrapperSingleton.plan_all(None,None,None,position_ids.squeeze(1)+1,
num_heads, head_dim_ckv, head_dim_kpe, past_key_values.page_size,
q_head_dim ** (-0.5), torch.bfloat16, torch.bfloat16)
global warm_uped
if use_cuda_graph and ( (warm_uped == True and int(i) == 1) or (warm_uped == False and int(i) == 2) ):
warm_uped = True
cuda_graph_runner = CUDAGraphRunner()
cuda_graph_runner.capture(model, next_token.unsqueeze(0), position_ids, cache_position, past_key_values, torch_device, return_dict=False, use_cache=True)
if i > 1 and use_flashinfer_mla:
MLAWrapperSingleton.plan_all(None,None,None,position_ids.squeeze(1)+1,
num_heads, head_dim_ckv, head_dim_kpe, past_key_values.page_size,
q_head_dim ** (-0.5), torch.bfloat16, torch.bfloat16)
next_token = decode_one_tokens(cuda_graph_runner, next_token.unsqueeze(0), position_ids, cache_position, past_key_values, use_cuda_graph).to(torch_device)
inputs = torch.cat((inputs, next_token.unsqueeze(0)), dim=-1)
generated_ids[:, cache_position] = next_token.int()
......
# this script targets to merge the fp8 safe tensor and the gguf quantized tensors.
import os
# insert the path of the project
import sys
sys.path.insert(0, "/home/azure/ktransformers")
import argparse
import torch
from ktransformers.util.custom_gguf import GGUFLoader, translate_name_to_gguf
from safetensors import safe_open
from safetensors.torch import save_file
import re
from collections import defaultdict
def read_safetensor_keys_from_folder(folder_path)->dict:
"""
:param folder_path: folder path
:return: key_to_file_map
"""
# check if the folder path is exist
if not os.path.exists(folder_path):
raise FileNotFoundError(f"GGUF dir not found: {folder_path}")
if os.path.isfile(folder_path):
folder_path = os.path.dirname(folder_path)
key_to_file_map = {}
found_safetensor = False
for root, dirs, files in os.walk(folder_path):
# sort files
files = sorted(files)
for file in files:
if file.endswith(".safetensors"):
found_safetensor = True
file_path = os.path.join(root, file)
try:
with safe_open(file_path, framework="pt") as f:
for key in f.keys():
if "model.layers.61" in key:
# skip MTP layer
continue
# try:
# if int(key.split('.')[2]) > 4:
# continue
# except:
# pass
key_to_file_map[key] = file_path
except Exception as e:
print(f"Error reading Safetensor file {file_path}: {e}")
if not found_safetensor:
raise FileNotFoundError(f"No Safetensor files found in {folder_path}")
return key_to_file_map
tensor_from_gguf = [] # todo: add keys in gguf that should be used in the final tensor
def translate_name(name:str)->str:
"""
:param name: name of the tensor
:return: translated name
"""
name = translate_name_to_gguf(name)
name = name.replace(".up_proj.", ".ffn_up_exps.")
name = name.replace(".down_proj.", ".ffn_down_exps.")
name = name.replace(".gate_proj.", ".ffn_gate_exps.")
name = name.replace(".ffn_gate_inp.e_score_correction_bias", ".exp_probs_b.bias")
return name
def combine_tensor_sources(safetensor_path:str, gguf_path:str):
gguf_loader = GGUFLoader(gguf_path)
gguf_tensor_file_map = gguf_loader.tensor_file_map
safetensor_tensor_file_map = read_safetensor_keys_from_folder(safetensor_path)
# build a map for the key to the tensor
# according to the key, we can get the tensor from the file
target_tensor_map = {}
for key in safetensor_tensor_file_map.keys():
# for all experts, we use the gguf tensor
if ".mlp.experts." in key:
if '.weight_scale_inv' in key:
continue
key = '.'.join(key.split('.')[:5]+key.split('.')[-2:])
translated_key = translate_name(key)
target_tensor_map[key] = gguf_tensor_file_map[translated_key]
continue
if any(target_key in key for target_key in tensor_from_gguf):
target_tensor_map[key] = gguf_tensor_file_map[translate_name(key)]
else:
target_tensor_map[key] = safetensor_tensor_file_map[key]
return target_tensor_map, gguf_loader
def write_combined_tensor(target_tensor_map: dict, output_path: str, gguf_loader: GGUFLoader):
# Ensure output directory exists
os.makedirs(output_path, exist_ok=True)
# Cache for safetensor file handles and GGUF loaders
safetensors_cache = {}
gguf_cache = {}
# Group tensors by layer
layer_groups = defaultdict(list)
non_layer_keys = []
layer_pattern = re.compile(r'\.layers\.(\d+)\.')
for key in target_tensor_map:
match = layer_pattern.search(key)
if match:
layer_num = int(match.group(1))
layer_groups[layer_num].append(key)
else:
non_layer_keys.append(key)
# Calculate total shards
total_shards = len(layer_groups) + (1 if non_layer_keys else 0) - 1
if total_shards == 0:
raise ValueError("No tensors to save")
shard_idx = 0
# Save non-layer tensors to the first shard if they exist
if non_layer_keys:
tensors = {}
for key in non_layer_keys:
file_path = target_tensor_map[key]
tensor = None
ggml_type = None
if file_path.endswith('.safetensors'):
if file_path not in safetensors_cache:
safetensors_cache[file_path] = safe_open(file_path, framework='pt')
f = safetensors_cache[file_path]
tensor = f.get_tensor(key)
elif file_path.endswith('.gguf'):
gguf_name = translate_name(key)
tensor, ggml_type = gguf_loader.get_undequanted_tensor_and_ggml_type(gguf_name)
else:
raise ValueError(f"Unsupported file format: {file_path}")
tensors[translate_name(key)] = tensor
if ggml_type:
ggml_type = torch.tensor(ggml_type)
ggml_key = translate_name(key)[:-7] + ".ggml_type" if translate_name(key).endswith(".weight") else translate_name(key) + ".ggml_type"
tensors[ggml_key] = ggml_type
output_file = os.path.join(output_path, f"model-{shard_idx:05}-of-{total_shards:05}.safetensors")
print(f"Saving non-layer tensors to {output_file}")
save_file(tensors, output_file)
print(tensors.keys())
shard_idx += 1
# Save each layer's tensors to subsequent shards
for layer_num in sorted(layer_groups.keys()):
layer_keys = layer_groups[layer_num]
tensors = {}
for key in layer_keys:
file_path = target_tensor_map[key]
tensor = None
ggml_type = None
if file_path.endswith('.safetensors'):
if file_path not in safetensors_cache:
safetensors_cache[file_path] = safe_open(file_path, framework='pt')
f = safetensors_cache[file_path]
tensor = f.get_tensor(key)
tensor_info = tensor.shape
elif file_path.endswith('.gguf'):
gguf_name = translate_name(key)
tensor, ggml_type = gguf_loader.get_undequanted_tensor_and_ggml_type(gguf_name)
# tensor_info = gguf_loader.tensor_info[gguf_name]
# ggml_type = gguf_loader.tensor_info[gguf_name]['ggml_type']
else:
raise ValueError(f"Unsupported file format: {file_path}")
tensors[translate_name(key)] = tensor
if ggml_type:
ggml_type = torch.tensor(ggml_type)
ggml_key = translate_name(key)[:-7] + ".ggml_type" if translate_name(key).endswith(".weight") else translate_name(key) + ".ggml_type"
tensors[ggml_key] = ggml_type
output_file = os.path.join(output_path, f"model-{shard_idx:05}-of-{total_shards:05}.safetensors")
print(f"Saving layer {layer_num} to {output_file}")
# print(tensors.keys())
save_file(tensors, output_file)
shard_idx += 1
return
def main():
# 创建命令行参数解析器
parser = argparse.ArgumentParser(description="Read parameters from Safetensor and GGUF files")
parser.add_argument("--safetensor_path", type=str, help="Path to the Safetensor file", default="/mnt/data/model/DeepSeek-V3")
parser.add_argument("--gguf_path", type=str, help="Path to the GGUF file", default="/mnt/data/model/DeepseekV3-q4km-gguf")
parser.add_argument("--output_path", type=str, help="Path to the output file", default="/mnt/data/model/ktrans-safetensors/DeepSeek-V3-q4km-fp8")
# print all the arguments
print("All the arguments:")
print(parser.parse_args())
# 解析命令行参数
args = parser.parse_args()
safetensor_path = args.safetensor_path
gguf_path = args.gguf_path
output_path = args.output_path
target_tensor_map, gguf_loader = combine_tensor_sources(safetensor_path, gguf_path)
write_combined_tensor(target_tensor_map, output_path, gguf_loader)
return
if __name__ == "__main__":
main()
\ No newline at end of file
......@@ -4,4 +4,6 @@ numpy
torch>=2.3.0
packaging
cpufeature
protobuf
\ No newline at end of file
protobuf
tiktoken
blobfile
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment