/*************************************************************************************************** * Copyright (c) 2023 - 2025 Hygon Information Technology Co., Ltd. All rights reserved. * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* \file \brief Defines operations for reduction operation in HYTLASS Library. */ #pragma once #include #include "hytlass/hytlass.h" #include "hytlass/epilogue/thread/linear_combination.h" #include "hytlass/epilogue/thread/linear_combination_clamp.h" #include "hytlass/reduction/thread/reduction_operators.h" #include "hytlass/reduction/device/reduce_split_k.h" #include "hytlass/library/library.h" #include "library_internal.h" #include "hytlass/core_io.h" /////////////////////////////////////////////////////////////////////////////////////////////////// namespace hytlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// template class ReductionOperation : public Operation { public: using Operator = Operator_; using ElementWorkspace = typename Operator::ElementWorkspace; using ElementAccumulator = typename Operator::ElementAccumulator; using ElementOutput = typename Operator::ElementOutput; using ElementCompute = typename Operator::OutputOp::ElementCompute; using OperatorArguments = typename Operator::Arguments; protected: /// ReductionDescription description_; public: /// Constructor ReductionOperation(char const *name = "unknown_reduction") { description_.name = name; description_.provider = Provider::kHYTLASS; description_.kind = OperationKind::kReduction; description_.tile_description.threadblock_shape = make_Coord(Operator::Shape::kRow, Operator::Shape::kColumn, 1); description_.tile_description.math_instruction.instruction_shape = make_Coord(1, 1, 1); description_.tile_description.math_instruction.element_accumulator = NumericTypeMap::kId; description_.tile_description.math_instruction.opcode_class = OpcodeClassID::kSimt; description_.tile_description.math_instruction.math_operation = MathOperationID::kAdd; description_.tile_description.minimum_compute_capability = 50; description_.tile_description.maximum_compute_capability = 1024; description_.element_workspace = NumericTypeMap::kId; description_.element_output = NumericTypeMap::kId; description_.element_epilogue = NumericTypeMap::kId; } /// Returns the description of the Reduction operation virtual OperationDescription const & description() const { return description_; } /// Not Implement !!! virtual gemm::GemmCoord get_tiled_shape( void const *configuration_ptr, void const *arguments_ptr) const { return gemm::GemmCoord(0, 0, 0); } protected: /// Constructs the arguments structure given the configuration and arguments static Status construct_arguments_( OperatorArguments &operator_args, ReductionConfiguration const *configuration) { operator_args.problem_size = configuration->problem_size; operator_args.partitions = configuration->partitions; operator_args.partition_stride = configuration->partition_stride; operator_args.workspace = {nullptr, int(configuration->ldw)}; operator_args.source = {nullptr, int(configuration->lds)}; operator_args.destination = {nullptr, int(configuration->ldd)}; return Status::kSuccess; } /// Constructs the arguments structure given the configuration and arguments static Status update_arguments_( OperatorArguments &operator_args, ReductionArguments const *arguments) { if (arguments->pointer_mode == ScalarPointerMode::kHost) { typename Operator::OutputOp::Params params( *static_cast(arguments->alpha), *static_cast(arguments->beta) ); operator_args.output = params; } else if (arguments->pointer_mode == ScalarPointerMode::kDevice){ typename Operator::OutputOp::Params params( static_cast(arguments->alpha), static_cast(arguments->beta) ); operator_args.output = params; } else { return Status::kErrorInvalidProblem; } operator_args.workspace.reset(static_cast(const_cast(arguments->workspace))); operator_args.source.reset(static_cast(const_cast(arguments->source))); operator_args.destination.reset(static_cast(const_cast(arguments->destination))); return Status::kSuccess; } public: /// Returns success if the operation can proceed virtual Status can_implement( void const *configuration_ptr, void const *arguments_ptr) const { ReductionConfiguration const *configuration = static_cast(configuration_ptr); ReductionArguments const *arguments = static_cast(arguments_ptr); OperatorArguments args; Status status = construct_arguments_(args, configuration); if (status != Status::kSuccess) { return status; } status = update_arguments_(args, arguments); if (status != Status::kSuccess) { return status; } return Operator::can_implement(args); } /// Gets the host-side workspace virtual uint64_t get_host_workspace_size( void const *configuration) const { return sizeof(Operator); } /// Gets the device-side workspace virtual uint64_t get_device_workspace_size( void const *configuration_ptr, void const *arguments_ptr = nullptr) const { OperatorArguments args; Status status = construct_arguments_( args, static_cast(configuration_ptr)); if (status != Status::kSuccess) { return 0; } return Operator::get_workspace_size(args); } /// Initializes the workspace virtual Status initialize( void const *configuration_ptr, void *host_workspace, void *device_workspace, hipStream_t stream = nullptr) const { OperatorArguments args; Status status = construct_arguments_( args, static_cast(configuration_ptr)); if (status != Status::kSuccess) { return status; } Operator *op = new (host_workspace) Operator; //std::cout << "initialize library::Reduction" << std::endl; //print_operator_args(args); return op->initialize(args, device_workspace, stream); } /// Runs the kernel virtual Status run( void const *arguments_ptr, void *host_workspace, void *device_workspace = nullptr, hipStream_t stream = nullptr) const { OperatorArguments args; Status status = update_arguments_( args, static_cast(arguments_ptr)); if (status != Status::kSuccess) { return status; } Operator *op = static_cast(host_workspace); status = op->update(args, device_workspace); if (status != Status::kSuccess) { return status; } //std::cout << "run library::Reduction" << std::endl; //print_operator_args(args); return op->run(stream); } /// Call print_operator_args from the Reduction::initialize() // to dump arguments passed on to hytlass operator for debugging void print_operator_args(OperatorArguments &operator_args) const { std::cout << "Reduction::OperatorArguments" << std::endl << " problem_size: " << operator_args.problem_size << std::endl << " partitions: " << operator_args.partitions << std::endl << " partition_stride: " << operator_args.partition_stride << std::endl << " epilogue (alpha, beta): " << operator_args.output.alpha << ", " << operator_args.output.beta << std::endl << " workspace (ptr, stride): " << operator_args.workspace.data() << ", " << operator_args.workspace.stride(0) << std::endl << " source (ptr, stride): " << operator_args.source.data() << ", " << operator_args.source.stride(0) << std::endl << " destination (ptr, stride): " << operator_args.destination.data() << ", " << operator_args.destination.stride(0) << std::endl; } }; /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace hytlass ///////////////////////////////////////////////////////////////////////////////////////////////////