/*************************************************************************************************** * Copyright (c) 2023 - 2025 Hygon Information Technology Co., Ltd. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #include "../../common/hytlass_unit_test.h" #include "hytlass/aligned_buffer.h" #include "hytlass/half.h" #include "hytlass/epilogue/thread/linear_combination.h" #include "hytlass/epilogue/thread/linear_combination_clamp.h" #include "hytlass/gemm/warp/default_mma_tensor_op.h" #include "hytlass/epilogue/threadblock/default_epilogue_tensor_op.h" #include "hytlass/util/host_tensor.h" #include "hytlass/util/tensor_view_io.h" #include "hytlass/util/reference/host/tensor_fill.h" #include "testbed.h" ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, s8_tensor_op_64x64_64x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int32_t; using ElementCompute = int32_t; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 32>; using Element = ElementOutput; using LayoutA = hytlass::layout::RowMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using LayoutB = hytlass::layout::ColumnMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, hytlass::layout::RowMajor, hytlass::arch::OpMultiplyAdd>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX928_Epilogue_threadblock_epilogue, s8_tensor_op_64x64_32x32x32) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int32_t; using ElementCompute = int32_t; int const kElementsPerAccess = 64 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 32, 32>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 32>; using Element = ElementOutput; using LayoutA = hytlass::layout::RowMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using LayoutB = hytlass::layout::ColumnMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, hytlass::layout::RowMajor, hytlass::arch::OpMultiplyAdd>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX928_Epilogue_threadblock_epilogue, s8_tensor_op_128x128_64x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int32_t; using ElementCompute = int32_t; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 32>; using Element = ElementOutput; using LayoutA = hytlass::layout::RowMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using LayoutB = hytlass::layout::ColumnMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, hytlass::layout::RowMajor, hytlass::arch::OpMultiplyAdd>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX928_Epilogue_threadblock_epilogue, s8_tensor_op_64x128_64x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int32_t; using ElementCompute = int32_t; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 32>; using Element = ElementOutput; using LayoutA = hytlass::layout::RowMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using LayoutB = hytlass::layout::ColumnMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, hytlass::layout::RowMajor, hytlass::arch::OpMultiplyAdd>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX928_Epilogue_threadblock_epilogue, s8_tensor_op_128x64_64x32x32) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int32_t; using ElementCompute = int32_t; int const kElementsPerAccess = 64 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 32>; using Element = ElementOutput; using LayoutA = hytlass::layout::RowMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using LayoutB = hytlass::layout::ColumnMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, hytlass::layout::RowMajor, hytlass::arch::OpMultiplyAdd>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX928_Epilogue_threadblock_epilogue, s8_tensor_op_64x128_32x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int32_t; using ElementCompute = int32_t; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 32>; using Element = ElementOutput; using LayoutA = hytlass::layout::RowMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using LayoutB = hytlass::layout::ColumnMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, hytlass::layout::RowMajor, hytlass::arch::OpMultiplyAdd>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX928_Epilogue_threadblock_epilogue, s8_tensor_op_32x128_32x64x32) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int32_t; using ElementCompute = int32_t; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<32, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 32>; using Element = ElementOutput; using LayoutA = hytlass::layout::RowMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using LayoutB = hytlass::layout::ColumnMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, hytlass::layout::RowMajor, hytlass::arch::OpMultiplyAdd>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX928_Epilogue_threadblock_epilogue, s8_tensor_op_128x32_64x32x32) { // // Define the warp-level matrix multiply // using ElementOutput = int8_t; using ElementAccumulator = int32_t; using ElementCompute = int32_t; int const kElementsPerAccess = 64 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 32, 32>; using WarpShape = hytlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 32>; using Element = ElementOutput; using LayoutA = hytlass::layout::RowMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using LayoutB = hytlass::layout::ColumnMajorTensorOpMultiplicandCrosswise64b< hytlass::sizeof_bits::value, 32>; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementAccumulator, hytlass::layout::RowMajor, hytlass::arch::OpMultiplyAdd>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, tensor_op_64x64_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 64, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, tensor_op_128x128_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, tensor_op_128x256_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 256, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, tensor_op_256x128_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<256, 128, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, tensor_op_32x32_32x32x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<32, 32, 16>; using WarpShape = hytlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, tensor_op_64x64_32x32x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 64, 16>; using WarpShape = hytlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, tensor_op_64x128_32x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 16>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, tensor_op_128x64_64x32x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 64, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 32, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Mixed precision tests // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x64_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 64, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x128_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x256_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 256, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_256x128_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<256, 128, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_32x32_32x32x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<32, 32, 16>; using WarpShape = hytlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x64_32x32x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 64, 16>; using WarpShape = hytlass::gemm::GemmShape<32, 32, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_64x128_32x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 16>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, mixed_f16_f32_tensor_op_128x64_64x32x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 128 / hytlass::sizeof_bits::value; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 64, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 32, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, vec1_mixed_f16_f32_tensor_op_128x128_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, vec1_mixed_f16_f32_tensor_op_128x256_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = hytlass::half_t; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 256, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX928_Epilogue_threadblock_epilogue, vec1_tensor_op_128x128_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX928_Epilogue_threadblock_epilogue, vec1_tensor_op_128x256_64x64x16) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; int const kPartitionsK = 1; using Shape = hytlass::gemm::GemmShape<128, 256, 16>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 16>; using InstructionShape = hytlass::gemm::GemmShape<16, 16, 16>; using Element = hytlass::half_t; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutB = hytlass::layout::RowMajorNaiveTensorOpMultiplicandCongruous< hytlass::sizeof_bits::value>; using LayoutC = hytlass::layout::RowMajor; using WarpMmaTensorOp = typename hytlass::gemm::warp::DefaultMmaTensorOp< WarpShape, InstructionShape, Element, LayoutA, Element, LayoutB, ElementC, LayoutC>::Type; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueTensorOp< Shape, WarpMmaTensorOp, kPartitionsK, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } /////////////////////////////////////////////////////////////////////////////////////////////////