/*************************************************************************************************** * Copyright (c) 2023 - 2025 Hygon Information Technology Co., Ltd. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #include "../../common/hytlass_unit_test.h" #include "hytlass/aligned_buffer.h" #include "hytlass/gemm/warp/mma_simt.h" #include "hytlass/gemm/warp/mma_simt_policy.h" #include "hytlass/epilogue/thread/linear_combination.h" #include "hytlass/epilogue/threadblock/default_epilogue_simt.h" #include "hytlass/util/host_tensor.h" #include "hytlass/util/tensor_view_io.h" #include "hytlass/util/reference/host/tensor_fill.h" #include "testbed.h" ///////////////////////////////////////////////////////////////////////////////////////////////// // // Real-valued single precision tests // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_32x64_32x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 64, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using Element = float; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_32x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using Element = float; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_64x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using Element = float; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_128x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementOutput = float; using ElementAccumulator = float; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using Element = float; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Real-valued double precision tests // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_f64_32x64_32x64x8) { // // Define the warp-level matrix multiply // using Element = double; using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 64, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<2, 2, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f64_32x128_32x64x8) { // // Define the warp-level matrix multiply // using Element = double; using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<2, 2, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f64_64x128_32x64x8) { // // Define the warp-level matrix multiply // using Element = double; using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<2, 2, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f64_128x128_32x64x8) { // // Define the warp-level matrix multiply // using Element = double; using ElementOutput = double; using ElementAccumulator = double; using ElementCompute = double; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<2, 2, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Complex-valued single-precision // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_complex_f32_32x64_32x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::complex; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 64, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<2, 2, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_complex_f32_32x128_32x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::complex; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<2, 2, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_complex_f32_128x128_32x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::complex; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<2, 2, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Complex-valued double-precision // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_complex_f64_32x64_32x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::complex; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 64, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<1, 1, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_complex_f64_32x128_32x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::complex; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<1, 1, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_complex_f64_128x128_32x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::complex; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<1, 1, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Real-valued half precision tests // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_f16_32x64_32x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::half_t; using ElementOutput = hytlass::half_t; using ElementAccumulator = hytlass::half_t; using ElementCompute = hytlass::half_t; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 64, 8>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f16_64x64_64x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::half_t; using ElementOutput = hytlass::half_t; using ElementAccumulator = hytlass::half_t; using ElementCompute = hytlass::half_t; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<64, 64, 8>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f16_64x128_64x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::half_t; using ElementOutput = hytlass::half_t; using ElementAccumulator = hytlass::half_t; using ElementCompute = hytlass::half_t; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f16_128x128_64x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::half_t; using ElementOutput = hytlass::half_t; using ElementAccumulator = hytlass::half_t; using ElementCompute = hytlass::half_t; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<64, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f16_128x256_64x128x8) { // // Define the warp-level matrix multiply // using Element = hytlass::half_t; using ElementOutput = hytlass::half_t; using ElementAccumulator = hytlass::half_t; using ElementCompute = hytlass::half_t; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 256, 8>; using WarpShape = hytlass::gemm::GemmShape<64, 128, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f16_256x128_128x64x8) { // // Define the warp-level matrix multiply // using Element = hytlass::half_t; using ElementOutput = hytlass::half_t; using ElementAccumulator = hytlass::half_t; using ElementCompute = hytlass::half_t; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<256, 128, 8>; using WarpShape = hytlass::gemm::GemmShape<128, 64, 8>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using ElementOutput = Element; using ElementAccumulator = Element; using ElementCompute = Element; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, Element, LayoutA, Element, LayoutB, Element, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<8, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Real-valued Integer tests // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_i32_32x64_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_i32_32x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_i32_64x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_i32_128x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_i32_128x64_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Real-valued Integer - single-precision float output // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_i32_32x64_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = float; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_i32_32x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = float; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_i32_64x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = float; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_i32_128x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = float; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_f32_i32_128x64_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = float; using ElementAccumulator = int; using ElementCompute = float; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } ///////////////////////////////////////////////////////////////////////////////////////////////// // // Real-valued Integer tests - mixed-precision with clamping // ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(GFX906_Epilogue_threadblock_epilogue, simt_i8_i32_32x64_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = int; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_i8_i32_32x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = int; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<32, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_i8_i32_64x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = int; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<64, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_i8_i32_128x128_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = int; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 128, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } TEST(GFX906_Epilogue_threadblock_epilogue, simt_i8_i32_128x64_32x64x8) { // // Define the warp-level matrix multiply // using ElementA = int8_t; using ElementB = int8_t; using ElementC = int; using ElementOutput = int8_t; using ElementAccumulator = int; using ElementCompute = int; int const kElementsPerAccess = 1; using Shape = hytlass::gemm::GemmShape<128, 64, 32>; using WarpShape = hytlass::gemm::GemmShape<32, 64, 32>; using ElementC = ElementAccumulator; using LayoutA = hytlass::layout::ColumnMajor; using LayoutB = hytlass::layout::RowMajor; using LayoutC = hytlass::layout::RowMajor; using WarpMmaSimt = hytlass::gemm::warp::MmaSimt< WarpShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, hytlass::gemm::warp::MmaSimtPolicy< hytlass::MatrixShape<4, 16>, hytlass::layout::RowMajorInterleaved<2>, hytlass::gemm::GemmShape<4, 4, 1> > >; // // Output operator // using OutputOp = hytlass::epilogue::thread::LinearCombination< ElementOutput, kElementsPerAccess, ElementAccumulator, ElementCompute >; // // Define the epilogue // using Epilogue = typename hytlass::epilogue::threadblock::DefaultEpilogueSimt< Shape, WarpMmaSimt, OutputOp, kElementsPerAccess >::Epilogue; // // Instantiate epilogue // EpilogueTestbed testbed; bool passed = testbed.run_all(); EXPECT_TRUE(passed); } /////////////////////////////////////////////////////////////////////////////////////////////////