[README](../../README.md#documentation) > **Quick Start** # Quickstart ## Prerequisites HYTLASS requires: - DCU Toolkit (25.10 or later required) - CMake 3.19+ - host compiler supporting C++17 or greater - Python 3.5+ HYTLASS may be optionally compiled and linked with - hipBLAS ## Initial build steps Construct a build directory and run CMake. ```bash $ source ${DCU Toolkit}/env.sh $ mkdir build && cd build $ cmake .. -DHYTLASS_HIPCC_ARCHS=928 ``` If your goal is strictly to build only the HYTLASS Profiler and to minimize compilation time, we suggest executing the following CMake command in an empty `build/` directory. ```bash $ cmake .. -DHYTLASS_HIPCC_ARCHS=928 -DHYTLASS_ENABLE_TESTS=OFF -DHYTLASS_UNITY_BUILD_ENABLED=ON ``` This reduces overall compilation time by excluding unit tests and enabling the unity build. You may reduce build times by compiling only certain operations by setting the `HYTLASS_LIBRARY_OPERATIONS` flag as shown below, executed from an empty `build/` directory. This only compiles 2-D convolution kernels. ```bash $ cmake .. -DHYTLASS_HIPCC_ARCHS=928 -DHYTLASS_LIBRARY_OPERATIONS=conv2d ``` You may also filter kernels by name by supplying a filter string with flag `HYTLASS_LIBRARY_KERNELS`. For example the below command selects only HYTLASS-3 kernels. ```bash $ cmake .. -DHYTLASS_HIPCC_ARCHS=928 -DHYTLASS_LIBRARY_KERNELS=hytlass3x* ``` ## Build and run the HYTLASS Profiler From the `build/` directory created above, compile the HYTLASS Profiler. ```bash $ make hytlass_profiler -j12 ``` Then execute the HYTLASS Profiler computing GEMM, execute the following command. ```bash $ ./tools/profiler/hytlass_profiler --kernels=sgemm --m=4352 --n=4096 --k=4096 ============================= Problem ID: 1 Provider: HYTLASS OperationKind: gemm Operation: hytlass3x_simt_s8_igemm_s8_32x32x32_1x1x1_x2_nn_align_a16_b16_c16 Status: Success Verification: ON Disposition: Passed reference_device: Passed hipBLAS: Not run Arguments: --gemm_kind=universal --m=4352 --n=4096 --k=4096 --lda=4352 --ldb=4096 --ldc=4352 --A=s8:column --B=s8:column \ --C=s8:column --D=s8:column --alpha=1 --beta=0 --split_k_mode=serial --split_k_slices=1 --batch_count=1 \ --raster_order=heuristic --stagger_k=1 --stagger_k_stride=0 --swizzle_size=1 --op_class=simt --accum=s32 \ --cta_m=32 --cta_n=32 --cta_k=32 --cluster_m=1 --cluster_n=1 --cluster_k=1 --stages=2 --warps_m=2 --warps_n=1 \ --warps_k=1 --inst_m=1 --inst_n=1 --inst_k=4 --min_cc=906 --max_cc=1024 Bytes: 36896768 bytes FLOPs: 72491728896 flops FLOPs/Byte: 1964 Runtime: xxx ms Memory: xxx GiB/s Math: xxx GFLOP/s ``` To execute the HYTLASS Profiler for convolution, run the following example. ```bash $ ./tools/profiler/hytlass_profiler --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --pad_h=1 --pad_w=1 ``` To execute all HYTLASS 2-D convolution operators, execute the following. ```bash $ ./tools/profiler/hytlass_profiler --operation=conv2d --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 ============================= Problem ID: 1 Provider: HYTLASS OperationKind: conv2d Operation: hytlass_tensorop_s16168fprop_optimized_32x32x16_1x1x1_x1_nhwc_align_a4_b4_c4 Status: Success Verification: ON Disposition: Passed reference_device: Passed Arguments: --conv_kind=fprop --n=8 --h=224 --w=224 --c=128 --k=128 --r=3 --s=3 --p=224 --q=224 --g=1 --pad_h=1 \ --pad_w=1 --stride_h=1 --stride_w=1 --dilation_h=1 --dilation_w=1 --Activation=f32:nhwc --Filter=f32:nhwc \ --Output=f32:nhwc --conv_mode=cross --iterator_algorithm=optimized --alpha=1 --beta=0 --split_k_mode=serial \ --split_k_slices=1 --eq_gemm_provider=none --op_class=tensorop --accum=f32 --cta_m=32 --cta_n=32 --cta_k=16 \ --cluster_m=1 --cluster_n=1 --cluster_k=1 --stages=1 --warps_m=1 --warps_n=1 --warps_k=1 --inst_m=16 \ --inst_n=16 --inst_k=8 --min_cc=928 --max_cc=1024 Bytes: 2055798784 bytes FLOPs: 118482796544 flops FLOPs/Byte: 57 Runtime: xxx ms Memory: xxx GiB/s Math: xxx GFLOP/s ``` ## Build and run HYTLASS Unit Tests From the `build/` directory created above, simply build the target `test_unit` to compile and run all unit tests. ```bash $ make test_unit -j ... ... ... [----------] Global test environment tear-down [==========] 60 tests from 24 test suites ran. (22159 ms total) [ PASSED ] 60 tests. ``` The exact number of tests run is subject to change as we add more functionality. No tests should fail. Unit tests automatically construct the appropriate runtime filters to avoid executing on architectures that do not support all features under test. The unit tests are arranged hierarchically mirroring the HYTLASS Template Library. This enables parallelism in building and running tests as well as reducing compilation times when a specific set of tests are desired. For example, the following executes strictly the hytlass 2.x tensorop GEMM tests. ```bash $ make test_unit_gemm_device_tensorop_gfx928 -j ... ... [----------] 16 tests from GFX928_Device_Gemm_bf16n_bf16n_f32t_tensor_op_f32 [ RUN ] GFX928_Device_Gemm_bf16n_bf16n_f32t_tensor_op_f32.128x256x64_64x64x64 [ OK ] GFX928_Device_Gemm_bf16n_bf16n_f32t_tensor_op_f32.128x256x64_64x64x64 (0 ms) [ RUN ] GFX928_Device_Gemm_bf16n_bf16n_f32t_tensor_op_f32.256x128x64_64x64x64 [ OK ] GFX928_Device_Gemm_bf16n_bf16n_f32t_tensor_op_f32.256x128x64_64x64x64 (0 ms) ... [----------] 16 tests from GFX928_Device_Gemm_bf16t_bf16t_bf16t_tensor_op_f32 (788 ms total) ... ... [----------] Global test environment tear-down [==========] 371 tests from 26 test suites ran. (106656 ms total) [ PASSED ] 371 tests. [100%] Built target test_unit_gemm_device_tensorop_gfx928 ``` ## Building for Multiple Architectures To minimize compilation time, specific GPU architectures can be enabled via the CMake command. **Hygon BW Architecture.** ```bash $ cmake .. -DHYTLASS_HIPCC_ARCHS=936 # compiles for Hygon BW architecture ``` **Hygon KM-ECO Architecture.** ```bash $ cmake .. -DHYTLASS_HIPCC_ARCHS=928 # compiles for Hygon KM-ECO architecture ``` ## Launching a GEMM kernel Refer to [examples](/examples) 00 ~ 07 for the usage of HYTLASS 2.x API and the collective builders. # HYTLASS Library The [HYTLASS Library](/tools/library) defines an API for managing and executing collections of compiled kernel instances and launching them from host code without template instantiations in client code. The host-side launch API is designed to be analogous to BLAS implementations for convenience, though its kernel selection procedure is intended only to be functionally sufficient. It may not launch the optimal tile size for a given problem. It chooses the first available kernel whose data types, layouts, and alignment constraints satisfy the given problem. Kernel instances and a data structure describing them are completely available to client applications which may choose to implement their own selection logic.