/*************************************************************************************************** * Copyright (c) 2023 - 2025 Hygon Information Technology Co., Ltd. All rights reserved. * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMM interface */ #pragma once #include #include #include #include "hytlass_unit_test.h" #include "hytlass/util/host_tensor.h" #include "hytlass/util/tensor_view_io.h" #include "hytlass/util/distribution.h" #include "hytlass/util/packed_stride.hpp" #include "hytlass/util/reference/host/tensor_fill.h" #include "hytlass/util/reference/host/tensor_copy.h" #include "hytlass/util/reference/host/tensor_compare.h" #include "hytlass/util/reference/host/tensor_norm.h" #include "hytlass/util/reference/host/gett.hpp" #include "hytlass/util/GPU_Clock.hpp" #include "testbed_utils.h" #include "hytlass/kernel_hardware_info.hpp" #include "hytlass/layout/matrix.h" #include "hytlass/matrix_coord.h" #include "hytlass/gemm/gemm.h" #include "hytlass/epilogue/fusion/operations.hpp" #include "hute/int_tuple.hpp" namespace test { namespace gemm { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// namespace detail{ // Helper classes that take default data type when // the Gemm::EpilogueOutputOp does not have ElementCompute // and ElementScalar. template struct ElementComputeType { using Type = Default; }; template struct ElementComputeType> { using Type = typename Gemm::EpilogueOutputOp::ElementCompute; }; template struct ElementScalarType { using Type = Default; }; template struct ElementScalarType> { using Type = typename Gemm::EpilogueOutputOp::ElementScalar; }; // The number of splits to test. // // This class makes it harder to confuse the order of arguments // of the various run(...) functions in this file. The constructor // is explicit, so one can't just type 42 (or false, which the // compiler unhelpfully turns into 0); one has to type Splits(42). // Splits() picks the default number of splits, 1. // // The conversion-to-int operator (operator int()) MUST be explicit! // Conversion to int MUST require static_cast. // Otherwise, that defeats a key purpose of this class, // which is to catch common errors of confusing the order // of function arguments. class Splits { public: Splits() = default; template && !std::is_same_v)) > explicit Splits(IntegralNotBool splits) : splits_(splits) {} explicit operator int() const { return splits_; } private: int splits_ = 1; }; // The number of iterations to test. // // This class, like Splits above makes it harder to confuse // the order of arguments of the various run(...) functions in this file. // Iterations() picks the default number of iterations, 20. class Iterations { public: Iterations() = default; template && !std::is_same_v)) > explicit Iterations(IntegralNotBool iterations) : iterations_(iterations) {} explicit operator int() const { return iterations_; } private: int iterations_ = 20; }; template < typename Gemm, template class ActivationFunctor_ = hytlass::epilogue::thread::Identity > struct TestbedImpl { // Kernel data types using ElementA = typename Gemm::GemmKernel::ElementA; using StrideA = typename Gemm::GemmKernel::StrideA; using ElementB = typename Gemm::GemmKernel::ElementB; using StrideB = typename Gemm::GemmKernel::StrideB; using ElementC = std::conditional_t, typename Gemm::GemmKernel::ElementD,typename Gemm::GemmKernel::ElementC>; using StrideC = typename Gemm::GemmKernel::StrideC; using ElementD = typename Gemm::GemmKernel::ElementD; using StrideD = typename Gemm::GemmKernel::StrideD; using ElementAccumulator = typename Gemm::GemmKernel::ElementAccumulator; using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape; using EpilogueOutputOp = typename Gemm::EpilogueOutputOp; /// For custom EVTs using ElementCompute = typename ElementComputeType::Type; using ElementScalar = typename ElementScalarType::Type; using ActivationFunctor = ActivationFunctor_; static_assert(rank(StrideC{}) == 3, "StrideCD must be rank-3: [M, N, L]"); static_assert(rank(StrideD{}) == 3, "StrideCD must be rank-3: [M, N, L]"); static constexpr uint32_t mma_promotion_interval = 4; // Looks at Hute Stride to check Row / Column Major template static constexpr bool is_row_or_col_major(){ int stride_0 = int(hute::size<0>(Stride{})); int stride_1 = int(hute::size<1>(Stride{})); int depth = hute::depth(Stride{}); return ((stride_0 == 1) || (stride_1 == 1)) && (depth == 1); } // Note: this limitation comes from testbed / not the library static_assert(is_row_or_col_major(), "ERROR : A Layout is neither Row / Column Major)"); static_assert(is_row_or_col_major(), "ERROR : B Layout is neither Row / Column Major)"); static_assert(is_row_or_col_major(), "ERROR : C Layout is neither Row / Column Major)"); static_assert(is_row_or_col_major(), "ERROR : D Layout is neither Row / Column Major)"); // Deduce Hytlass Layouts (RowMajor & ColumnMajor) using LayoutTagA = hytlass::detail::StrideToLayoutTagA_t; using LayoutTagB = hytlass::detail::StrideToLayoutTagB_t; using LayoutTagC = hytlass::detail::StrideToLayoutTagA_t; using LayoutTagD = hytlass::detail::StrideToLayoutTagA_t; /// Initialization StrideA stride_a; StrideB stride_b; StrideC stride_c; StrideD stride_d; typename LayoutTagA::Stride stride_factor_A; typename LayoutTagB::Stride stride_factor_B; typename LayoutTagC::Stride stride_factor_C; typename LayoutTagD::Stride stride_factor_D; hytlass::Distribution::Kind init_A; hytlass::Distribution::Kind init_B; hytlass::Distribution::Kind init_C; uint64_t seed; static constexpr uint64_t kDefaultSeed = 4096; hytlass::HostTensor tensor_A; hytlass::HostTensor tensor_B; hytlass::HostTensor tensor_C; hytlass::HostTensor tensor_D; hytlass::HostTensor reference_D; uint32_t sm_count; // Used to force multi-wave tests for persistent kernel schedules constexpr static int MaxSmCount = 16; // // Methods // TestbedImpl( hytlass::Distribution::Kind init_A_ = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_B_ = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_C_ = hytlass::Distribution::Uniform, uint64_t seed_ = kDefaultSeed ): stride_factor_A(typename LayoutTagA::Stride()), stride_factor_B(typename LayoutTagB::Stride()), stride_factor_C(typename LayoutTagC::Stride()), stride_factor_D(typename LayoutTagD::Stride()), init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } TestbedImpl( typename LayoutTagA::Stride stride_factor_A_, typename LayoutTagB::Stride stride_factor_B_, typename LayoutTagC::Stride stride_factor_C_, typename LayoutTagD::Stride stride_factor_D_, hytlass::Distribution::Kind init_A_ = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_B_ = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_C_ = hytlass::Distribution::Uniform, uint64_t seed_ = kDefaultSeed ): stride_factor_A(stride_factor_A_), stride_factor_B(stride_factor_B_), stride_factor_C(stride_factor_C_), stride_factor_D(stride_factor_D_), init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } /// Helper to initialize a tensor view template bool initialize_tensor( hytlass::TensorView view, hytlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == hytlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = hytlass::sizeof_bits::value; int bits_output = hytlass::sizeof_bits::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } hytlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, 0); } else if (dist_kind == hytlass::Distribution::Identity) { hytlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == hytlass::Distribution::Gaussian) { hytlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == hytlass::Distribution::Sequential) { hytlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else if (dist_kind == hytlass::Distribution::AllOnes) { hytlass::reference::host::TensorFill(view, Element(1)); } else { return false; } return true; } /// Initializes data structures, this is batch Specialization void initialize(ProblemShapeType problem_size) { // // Allocate the GEMM workspace // auto problem_shape_MNKL = hute::append<4>(problem_size, 1); auto M = hute::size<0>(problem_shape_MNKL); auto N = hute::size<1>(problem_shape_MNKL); auto K = hute::size<2>(problem_shape_MNKL); auto L = hute::size<3>(problem_shape_MNKL); stride_a = hytlass::make_hute_packed_stride(StrideA{}, hute::make_shape(M, K, L)); stride_b = hytlass::make_hute_packed_stride(StrideB{}, hute::make_shape(N, K, L)); stride_c = hytlass::make_hute_packed_stride(StrideC{}, hute::make_shape(M, N, L)); stride_d = hytlass::make_hute_packed_stride(StrideD{}, hute::make_shape(M, N, L)); // 2.x host tensor does not natively contain a batch stride or coord, so we spoof if by folding it into the outer mode auto a_coord = hytlass::make_Coord(M * L, K); auto c_coord = hytlass::make_Coord(M * L, N); // Hytlass has Row/Col major refers to MxK times KxN matrix product, // so the HostTensorB should be treated as KxN in "coord"'s view auto b_coord = hytlass::make_Coord(K, N * L); tensor_A.resize(a_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(a_coord, stride_factor_A)); tensor_B.resize(b_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(b_coord, stride_factor_B)); tensor_C.resize(c_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(c_coord, stride_factor_C)); tensor_D.resize(c_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(c_coord, stride_factor_D)); reference_D.resize(c_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(c_coord, stride_factor_D), false); (initialize_tensor(tensor_A.host_view(), init_A, seed + 2022)); (initialize_tensor(tensor_B.host_view(), init_B, seed + 2021)); (initialize_tensor(tensor_C.host_view(), init_C, seed + 2020)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = ElementA(1); tensor_B.host_view().at({0, 0}) = ElementB(1); tensor_C.host_view().at({0, 0}) = ElementC(1); hytlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view()); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D.sync_device(); } /// Initializes data structures, this is splitk Specialization void initialize(ProblemShapeType problem_size, int slice_k) { // // Allocate the GEMM workspace // auto problem_shape_MNKL = hute::append<4>(problem_size, 1); auto M = hute::size<0>(problem_shape_MNKL); auto N = hute::size<1>(problem_shape_MNKL); auto K = hute::size<2>(problem_shape_MNKL); auto L = 1; // 由于L维度存的是slice_k,splitk与batch不能共存,因此batch count只能为1 stride_a = hytlass::make_hute_packed_stride(StrideA{}, hute::make_shape(M, K, L)); stride_b = hytlass::make_hute_packed_stride(StrideB{}, hute::make_shape(N, K, L)); stride_c = hytlass::make_hute_packed_stride(StrideC{}, hute::make_shape(M, N, L)); stride_d = hytlass::make_hute_packed_stride(StrideD{}, hute::make_shape(M, N, L)); // 2.x host tensor does not natively contain a batch stride or coord, so we spoof if by folding it into the outer mode auto a_coord = hytlass::make_Coord(M * L, K); auto c_coord = hytlass::make_Coord(M * L, N); // Hytlass has Row/Col major refers to MxK times KxN matrix product, // so the HostTensorB should be treated as KxN in "coord"'s view auto b_coord = hytlass::make_Coord(K, N * L); tensor_A.resize(a_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(a_coord, stride_factor_A)); tensor_B.resize(b_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(b_coord, stride_factor_B)); tensor_C.resize(c_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(c_coord, stride_factor_C)); tensor_D.resize(c_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(c_coord, stride_factor_D)); reference_D.resize(c_coord, hytlass::layout::Affine2Layout_Factory::layout_factory(c_coord, stride_factor_D), false); (initialize_tensor(tensor_A.host_view(), init_A, seed + 2022)); (initialize_tensor(tensor_B.host_view(), init_B, seed + 2021)); (initialize_tensor(tensor_C.host_view(), init_C, seed + 2020)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = ElementA(1); tensor_B.host_view().at({0, 0}) = ElementB(1); tensor_C.host_view().at({0, 0}) = ElementC(1); hytlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view()); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D.sync_device(); } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( hute::Shape problem_shape_MNKL, ElementScalar alpha, ElementScalar beta) { auto [M, N, K, L] = problem_shape_MNKL; tensor_D.sync_host(); bool passed = hytlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view()); if (!passed) { std::stringstream fname; fname << "error_Gemm_device_" << M << "x" << N << "x" << K << "x" << L << "_" << hute::get<0>(typename Gemm::GemmKernel::TileShape{}) << "_" << hute::get<1>(typename Gemm::GemmKernel::TileShape{}) << "_" << hute::get<2>(typename Gemm::GemmKernel::TileShape{}) << ".csv"; std::ofstream file(fname.str()); file << "problem: " << ' ' << M << "x" << N << "x" << K << ", Batch count = " << L << ", alpha: " << float(alpha) << ", beta: " << float(beta) << "\n\n"; file << "A =\n" << tensor_A.host_view() << "\nB =\n" << tensor_B.host_view() << "\nC =\n" << tensor_C.host_view() << "\n\nReference =\n" << reference_D.host_view() << "\n\nComputed =\n" << tensor_D.host_view(); } return passed; } /// Verifies the result is a GEMM bool verify( ProblemShapeType problem_size, ElementScalar alpha, ElementScalar beta) { auto problem_shape_MNKL = hute::append<4>(problem_size, 1); auto M = hute::size<0>(problem_shape_MNKL); auto N = hute::size<1>(problem_shape_MNKL); auto K = hute::size<2>(problem_shape_MNKL); auto L = hute::size<3>(problem_shape_MNKL); auto A = hute::make_tensor(tensor_A.host_data(), hute::make_layout(hute::make_shape(M, K, L), stride_a)); auto B = hute::make_tensor(tensor_B.host_data(), hute::make_layout(hute::make_shape(N, K, L), stride_b)); auto C = hute::make_tensor(tensor_C.host_data(), hute::make_layout(hute::make_shape(M, N, L), stride_c)); auto D = hute::make_tensor(reference_D.host_data(), hute::make_layout(hute::make_shape(M, N, L), stride_d)); auto Bias = hute::make_tensor(static_cast(nullptr), hute::make_layout(hute::make_shape(M, hute::_1{}))); auto Aux = hute::make_tensor(static_cast(nullptr), hute::make_layout(hute::make_shape(M, N, L), stride_d)); auto Valpha = hute::make_tensor(static_cast(nullptr), hute::make_layout(hute::make_shape(M, hute::_1{}))); auto Vbeta = hute::make_tensor(static_cast(nullptr), hute::make_layout(hute::make_shape(M, hute::_1{}))); hytlass::reference::host::GettMainloopParams mainloop_params{A, B}; hytlass::reference::host::GettEpilogueParams< ElementScalar, ElementScalar, ElementAccumulator, ElementCompute, decltype(C), decltype(D), decltype(Bias), decltype(Aux), decltype(Valpha), decltype(Vbeta), ActivationFunctor > epilogue_params{ alpha, beta, C, D, Bias, Aux , Valpha, Vbeta }; hytlass::reference::host::Gemm3x(mainloop_params, epilogue_params); return compare_reference(problem_shape_MNKL, alpha, beta); } /// Determine if the GFX device is sufficient to run the kernel bool sufficient() { // // Determine SMEM requirements and waive if not satisfied // int smem_size = Gemm::GemmKernel::SharedStorageSize; int device_idx; hipError_t result = hipGetDevice(&device_idx); if (result != hipSuccess) { throw std::runtime_error("hipGetDevice() API call failed."); } hipDeviceProp_t properties; result = hipGetDeviceProperties(&properties, device_idx); this->sm_count = properties.multiProcessorCount; if (result != hipSuccess) { throw std::runtime_error("hipGetDeviceProperties() failed"); } if (properties.sharedMemPerBlock < smem_size) { // return false; } return true; } bool profile( ProblemShapeType problem_size, int iterations, Gemm& gemm_op, typename Gemm::Arguments& arguments, hytlass::device_memory::allocation& workspace) { int M = hute::size<0>(problem_size); int N = hute::size<1>(problem_size); int K = hute::size<2>(problem_size); int L = 1; if constexpr(hute::rank(ProblemShapeType{}) == 4) { L = hute::size<3>(problem_size); } hytlass::Status status; // warm-up for (int iter = 0; iter < 10; ++iter) { status = gemm_op(arguments, workspace.get()); } (void)hipDeviceSynchronize(); // // Run the GEMM // hipError_t result; GPU_Clock timer; timer.start(); double gflops = (2.0*M*N*K) * 1e-9; for (int iter = 0; iter < iterations; ++iter) { status = gemm_op(arguments, workspace.get()); if (status != hytlass::Status::kSuccess) { return false; } } result = hipDeviceSynchronize(); double hute_time = timer.seconds() / iterations; HUTE_CHECK_LAST(); printf("HUTE_GEMM: [%6.1f]GFlop/s (%6.4f)ms\n", gflops / hute_time, hute_time*1000); if (result != hipSuccess) { return false; } return true; } /// Executes one test bool run( ProblemShapeType problem_size, ElementScalar alpha = ElementScalar(1), ElementScalar beta = ElementScalar(0), bool profiling = false, detail::Iterations iterations = Iterations{}, detail::Splits splits = Splits{}) { // Fail test if insufficient GFX device if (!sufficient()) { std::cout << "Test failed due to insufficient GFX device." << std::endl; return false; } // this->initialize(problem_size); // 使用batch时 auto slice_k = hute::get<3>(problem_size); // 使用splitk时,走另一个重载 this->initialize(problem_size, slice_k); // // Initialize the GEMM operator // hytlass::KernelHardwareInfo hw_info; hw_info.device_id = 0; if (not profiling) { this->sm_count = min(MaxSmCount, hytlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id)); hw_info.sm_count = this->sm_count; } else { this->sm_count = hytlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id); hw_info.sm_count = this->sm_count; } typename Gemm::GemmKernel::TileScheduler::Arguments scheduler_args; if constexpr (std::is_same_v) { scheduler_args = { static_cast(splits) }; } // DefaultEpilogue auto arguments = typename Gemm::Arguments { hytlass::gemm::GemmUniversalMode::kGemm, problem_size, { tensor_A.device_data(), stride_a, tensor_B.device_data(), stride_b }, { {alpha, beta}, tensor_C.device_data(), stride_c, tensor_D.device_data(), stride_d }, hw_info, scheduler_args }; Gemm gemm_op; size_t workspace_size = Gemm::get_workspace_size(arguments); hytlass::device_memory::allocation workspace(workspace_size); hytlass::Status status = gemm_op.can_implement(arguments); if (status != hytlass::Status::kSuccess) { hipError_t error = hipGetLastError(); std::cerr << "This test is not supported: " << hipGetErrorString(error) << "\n"; return true; } // // Run the GEMM // if (profiling) { printf("first step: verify results\n"); hipError_t result; status = gemm_op.initialize(arguments, workspace.get()); status = gemm_op.run(); result = hipDeviceSynchronize(); if (result != hipSuccess) { printf("Error at Kernel Sync.\n"); return false; } bool passed = this->verify(problem_size, alpha, beta); if (!passed) { printf("%s:%d\n",__FILE__,__LINE__); std::cout << "Error : Failed : with alpha: " << float(alpha) << ", beta: " << float(beta) << "\n"; } else { printf("%s:%d check passed\n",__FILE__,__LINE__); } return profile(problem_size, static_cast(iterations), gemm_op, arguments, workspace); } else { hipError_t result; status = gemm_op.initialize(arguments, workspace.get()); status = gemm_op.run(); result = hipDeviceSynchronize(); if (result != hipSuccess) { printf("Error at Kernel Sync.\n"); return false; } printf("verify results\n"); bool passed = this->verify(problem_size, alpha, beta); if (!passed) { printf("%s:%d\n",__FILE__,__LINE__); std::cout << "Error : Failed : with alpha: " << float(alpha) << ", beta: " << float(beta) << "\n"; } else { printf("%s:%d check passed\n",__FILE__,__LINE__); } return passed; } } }; } // namespace detail ///////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Gemm, template class ActivationFunctor > struct Testbed3x { using TestBedImpl = typename detail::TestbedImpl; using Kernel = typename Gemm::GemmKernel; using Epilogue = typename Gemm::GemmKernel::CollectiveEpilogue; using ElementAccumulator = typename TestBedImpl::ElementAccumulator; using ElementCompute = typename TestBedImpl::ElementCompute; using ElementScalar = typename TestBedImpl::ElementScalar; using LayoutTagA = typename TestBedImpl::LayoutTagA; using LayoutTagB = typename TestBedImpl::LayoutTagB; using LayoutTagC = typename TestBedImpl::LayoutTagC; using LayoutTagD = typename TestBedImpl::LayoutTagD; // Detail Implementation TestBedImpl impl_; // // Methods // Testbed3x( hytlass::Distribution::Kind init_A_ = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_B_ = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_C_ = hytlass::Distribution::Uniform, uint64_t seed_ = TestBedImpl::kDefaultSeed) : impl_(init_A_, init_B_, init_C_, seed_) {} Testbed3x( typename LayoutTagA::Stride stride_factor_A_, typename LayoutTagB::Stride stride_factor_B_, typename LayoutTagC::Stride stride_factor_C_, typename LayoutTagD::Stride stride_factor_D_, hytlass::Distribution::Kind init_A_ = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_B_ = hytlass::Distribution::Uniform, hytlass::Distribution::Kind init_C_ = hytlass::Distribution::Uniform, uint64_t seed_ = TestBedImpl::kDefaultSeed) : impl_(stride_factor_A_, stride_factor_B_, stride_factor_C_, stride_factor_D_, init_A_, init_B_, init_C_, seed_) {} /// Executes one test bool run( typename TestBedImpl::ProblemShapeType problem_size, ElementScalar alpha = ElementScalar(1), ElementScalar beta = ElementScalar(0), detail::Splits splits = detail::Splits{}, bool profiling = false, detail::Iterations iterations = detail::Iterations{}) { return impl_.run( problem_size, alpha, beta, profiling, iterations, splits ); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Gemm, typename Testbed = Testbed3x > bool TestAll(double alpha = 1.0, double beta = 0.0, Testbed testbed = {}) { using ElementScalar = typename Gemm::EpilogueOutputOp::ElementScalar; using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape; int max_alignment = std::max(Gemm::kAlignmentA, Gemm::kAlignmentB); std::vector problem_size_m = {256}; std::vector problem_size_n = {256}; if constexpr (std::is_same_v) { problem_size_m.push_back(768); problem_size_n.push_back(768); } constexpr int Stages = Gemm::GemmKernel::DispatchPolicy::Stages; constexpr int TileShapeK = hute::size<2>(typename Gemm::GemmKernel::TileShape{}); std::vector problem_size_k = {32}; std::vector problem_splits = {1}; if constexpr (std::is_same_v) { problem_splits.push_back(2); problem_splits.push_back(3); // As many splits as there are maximum k tiles problem_splits.push_back(Stages + 1); } bool passed = true; for (int m : problem_size_m) { for (int n : problem_size_n) { for (int k : problem_size_k) { for (int splits : problem_splits) { ProblemShapeType problem_size; if constexpr (hute::rank(ProblemShapeType{}) == 4) { problem_size = ProblemShapeType{m, n, k, /* l */ 1}; } else { problem_size = ProblemShapeType{m, n, k}; } printf("problem size:%d %d %d\n",m,n,k); passed = testbed.run( problem_size, hytlass::from_real(alpha), hytlass::from_real(beta), detail::Splits(splits) ); if (!passed) { return false; } } } } } return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// template bool TestAllBiasElementwise(double alpha = 1.0, double beta = 0.0, bool check_relative_equality=false) { return TestAll(alpha, beta, testbed); } ///////////////////////////////////////////////////////////////////////////////////////////////// template bool TestGemmPerf3x(int iterations = 20,int m = 4096,int n = 4096,int k = 128) { using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape; using ElementAccumulator = typename Gemm::GemmKernel::ElementAccumulator; using ElementScalar = ElementAccumulator; bool passed = true; std::vector problem_size_m = { m }; std::vector problem_size_n = { n }; std::vector problem_size_k = { k }; Testbed3x testbed; for (int m : problem_size_m) { for (int n : problem_size_n) { for (int k : problem_size_k) { ProblemShapeType problem_size; if constexpr (hute::rank(ProblemShapeType{}) == 4) { problem_size = ProblemShapeType{m, n, k, /* l */ 1}; } else { problem_size = ProblemShapeType{m, n, k}; } printf("perf test:{%d %d %d}\n",m,n,k); passed = testbed.run( problem_size, hytlass::from_real(1), hytlass::from_real(0), detail::Splits(1), true, detail::Iterations(iterations) ); if (!passed) { return false; } } } } return passed; } } // namespace device } // namespace gemm } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////