import pytest import os import sys import json import math import torch import torch.distributed as dist import torch.nn.functional as F from fmoe.functions import ensure_comm from test_ddp import _ensure_initialized, _run_distributed from test_numerical import _assert_numerical from fmoe.fastermoe.schedule import _fmoe_general_global_forward as smart_fwd from fmoe.layers import _fmoe_general_global_forward as naive_fwd @pytest.mark.parametrize("n_process", [8]) @pytest.mark.parametrize("d_model", [1024]) @pytest.mark.parametrize("batch_size", [16]) @pytest.mark.parametrize("n_expert", [1, 4]) @pytest.mark.parametrize("group_sz", [1, 2, 4]) def test_faster_schedule(n_process, d_model, batch_size, n_expert, group_sz): _run_distributed('_test_faster_schedule', n_process, { 'd_model': d_model, 'batch_size': batch_size, 'n_expert': n_expert }, script=__file__, env=dict( FMOE_FASTER_GROUP_SIZE=str(group_sz) ) ) def _test_faster_schedule(d_model, batch_size, n_expert): _ensure_initialized() rank = dist.get_rank() world_size = dist.get_world_size() x1 = torch.rand(batch_size, d_model).cuda() x1.requires_grad = True x2 = x1.data.clone() x2.requires_grad = True topk_idx = torch.randint(0, world_size * n_expert, (batch_size, 2)).cuda() m1s = [torch.nn.Linear(d_model, d_model).cuda() for _ in range(n_expert)] m2s = [torch.nn.Linear(d_model, d_model).cuda() for _ in range(n_expert)] with torch.no_grad(): for m1, m2 in zip(m1s, m2s): m2.weight.copy_(m1.weight) m2.bias.copy_(m1.bias) def ef1(x, fec, eidx): return m1s[eidx](x) def ef2(x, fec): o = 0 ys = [] for m, i in zip(m2s, fec): if i > 0: ys.append(m(x[o:o + i])) o += i y = torch.cat(ys) return y ensure_comm(x1, None) y1 = smart_fwd(x1, topk_idx, ef1, n_expert, world_size, experts=m1s) y1.sum().backward() y2 = naive_fwd(x2, topk_idx, ef2, n_expert, world_size, experts=m2s) y2.sum().backward() _assert_numerical(['out', 'grad_in'], [y1, x1.grad], [y2, x2.grad], rank) for i in range(n_expert): _assert_numerical([f'grad_bias_{i}', f'grad_weight_{i}'], [m1s[i].bias.grad, m1s[i].weight.grad], [m2s[i].bias.grad, m2s[i].weight.grad], rank) if __name__ == '__main__': if len(sys.argv) >= 3: args = json.loads(sys.argv[2]) locals()[sys.argv[1]](**args) else: # test_faster_schedule(8, 16, 16, 1, 2) _test_faster_schedule(4, 2, 4)