#include #include #include #include #include "moe_cuda_kernel.h" // NOTE: AT_ASSERT has become AT_CHECK on master after 0.4. #define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) std::vector moe_expert_count( torch::Tensor gate, size_t num_expert) { CHECK_INPUT(gate); return moe_cuda_expert_count(gate, num_expert); } std::vector moe_local_scatter( torch::Tensor input, torch::Tensor pos) { CHECK_INPUT(input); return moe_cuda_local_scatter(input, pos); } std::vector moe_local_gather( torch::Tensor output_buf, torch::Tensor pos) { CHECK_INPUT(output_buf); return moe_cuda_local_gather(output_buf, pos); } std::vector moe_forward( torch::Tensor input_buf, // [batch_size x in_feat] torch::Tensor weight, // [num_expert x out_feat x in_feat] torch::Tensor expert_count // [batch_size] ) { CHECK_INPUT(input_buf); CHECK_INPUT(weight); /* The bias term should have been merged into weight. Note the following fact that Wx+b = [W b] [x] [1] */ return moe_cuda_forward(input_buf, weight, expert_count); } std::vector moe_backward( torch::Tensor grad_output_buf, // [batch_size x out_feat] torch::Tensor input_buf, // [batch_size x out_feat] torch::Tensor weight, // [num_expert x out_feat x in_feat] torch::Tensor expert_count ) { CHECK_INPUT(grad_output_buf); CHECK_INPUT(input_buf); CHECK_INPUT(weight); /* The bias term should have been merged into weight. Note the following fact that Wx+b = [W b] [x] [1] */ return moe_cuda_backward(grad_output_buf, input_buf, weight, expert_count); } #ifdef MOE_USE_NCCL std::vector moe_expert_exchange( torch::Tensor local_expert_count, size_t num_expert, size_t n_workers) { return moe_cuda_expert_exchange(local_expert_count, num_expert, n_workers); } std::vector moe_global_scatter( torch::Tensor input_buf, torch::Tensor local_expert_count, torch::Tensor global_expert_count, size_t batch_size, size_t n_workers) { CHECK_INPUT(input_buf); return moe_cuda_global_scatter(input_buf, local_expert_count, global_expert_count, batch_size, n_workers); } std::vector moe_global_gather( torch::Tensor output_buf, torch::Tensor local_expert_count, torch::Tensor global_expert_count, size_t batch_size, size_t n_workers) { CHECK_INPUT(output_buf); return moe_cuda_global_gather(output_buf, local_expert_count, global_expert_count, batch_size, n_workers); } #endif /* int main() { int device=2; torch::Tensor input = torch::randn({2048, 512}, torch::dtype(torch::kFloat32).device(torch::kCUDA, device)); torch::Tensor gate = torch::zeros({2048, 2}, torch::dtype(torch::kInt64)); torch::Tensor weight = torch::randn({2, 512, 2048}, torch::dtype(torch::kFloat32).device(torch::kCUDA, device)); checkCudaErrors(cudaSetDevice(device)); moe_cuda_forward(input, gate, weight); } */ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("expert_count", &moe_expert_count, "MoE expert count (CUDA)"); m.def("local_scatter", &moe_local_scatter, "MoE local scatter (CUDA)"); m.def("local_gather", &moe_local_gather, "MoE local gather (CUDA)"); #ifdef MOE_USE_NCCL m.def("expert_exchange", &moe_expert_exchange, "MoE expert exchange (CUDA)"); m.def("global_scatter", &moe_global_scatter, "MoE global scatter (CUDA)"); m.def("global_gather", &moe_global_gather, "MoE global gather (CUDA)"); #endif m.def("forward", &moe_forward, "MoE forward (CUDA)"); m.def("backward", &moe_backward, "MoE backward (CUDA)"); }