import math from torch import nn import torch import torch.nn.functional as F class BruteForceMoELinear(nn.Module): def __init__(self, num_expert=32, in_feat=1024, out_feat=1024, world_size=0): super(BruteForceMoELinear, self).__init__() self.num_expert = num_expert self.in_feat = in_feat self.out_feat = out_feat self.weight = nn.Parameter( torch.Tensor(num_expert * world_size, out_feat, in_feat)) self.reset_parameters() def reset_parameters(self): for i in range(self.num_expert): linear = nn.Linear(in_features=self.in_feat, out_features=self.out_feat) self.weight.data[i] = linear.weight.data def forward(self, inp, gate): gate_long = gate.long() batch_size = inp.size(0) o = torch.empty(batch_size, self.out_feat, dtype=inp.dtype, device=inp.device) for i in range(self.num_expert): idx = (gate == i) x = inp[idx] x = x @ self.weight[i].t() o[idx] = x return o