#include #include #include #include std::vector moe_cuda_forward( torch::Tensor input, torch::Tensor gate, torch::Tensor weight); std::vector moe_cuda_backward( torch::Tensor grad_output, torch::Tensor input, torch::Tensor gate, torch::Tensor weight); // C++ interface // NOTE: AT_ASSERT has become AT_CHECK on master after 0.4. #define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) std::vector moe_forward( torch::Tensor input, // [batch_size x in_feat] torch::Tensor gate, // [batch_size] torch::Tensor weight // [num_expert x out_feat x in_feat] ) { CHECK_INPUT(input); CHECK_INPUT(gate); CHECK_INPUT(weight); /* The bias term should have been merged into weight. Note the following fact that Wx+b = [W b] [x] [1] */ return moe_cuda_forward(input, gate, weight); } std::vector moe_backward( torch::Tensor grad_output, // [batch_size x out_feat] torch::Tensor input, // [batch_size x out_feat] torch::Tensor gate, // [batch_size] torch::Tensor weight // [num_expert x out_feat x in_feat] ) { CHECK_INPUT(grad_output); CHECK_INPUT(input); CHECK_INPUT(gate); CHECK_INPUT(weight); /* The bias term should have been merged into weight. Note the following fact that Wx+b = [W b] [x] [1] */ return moe_cuda_forward(input, gate, weight); } /* int main() { int device=2; torch::Tensor input = torch::randn({2048, 512}, torch::dtype(torch::kFloat32).device(torch::kCUDA, device)); torch::Tensor gate = torch::zeros({2048, 2}, torch::dtype(torch::kInt64)); torch::Tensor weight = torch::randn({2, 512, 2048}, torch::dtype(torch::kFloat32).device(torch::kCUDA, device)); checkCudaErrors(cudaSetDevice(device)); moe_cuda_forward(input, gate, weight); } */ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward", &moe_forward, "MoE forward (CUDA)"); m.def("backward", &moe_backward, "MoE backward (CUDA)"); }