import math from torch import nn import torch import torch.nn.functional as F from fmoe.layers import FMoELinear, _fmoe_full_forward class FMoE(nn.Module): def __init__(self, num_expert=32, in_feat=1024, out_feat=1024, world_size=1): super(FMoE, self).__init__() self.num_expert = num_expert self.in_feat = in_feat self.out_feat = out_feat self.world_size = world_size self.linear = FMoELinear(num_expert, in_feat, out_feat) self.weight = self.linear.weight self.reset_parameters() def reset_parameters(self): self.linear.reset_parameters() def forward(self, inp, gate): return _fmoe_full_forward(inp, gate, [self.linear], None, self.num_expert, self.world_size) class BruteForceMoE(nn.Module): def __init__(self, num_expert=32, in_feat=1024, out_feat=1024, world_size=0): super(BruteForceMoE, self).__init__() self.num_expert = num_expert self.in_feat = in_feat self.out_feat = out_feat self.weight = nn.Parameter( torch.Tensor(num_expert * world_size, out_feat, in_feat)) self.reset_parameters() def reset_parameters(self): for i in range(self.num_expert): linear = nn.Linear(in_features=self.in_feat, out_features=self.out_feat) # print(linear.weight.shape) self.weight.data[i] = linear.weight.data def forward(self, inp, gate): gate_long = gate.long() batch_size = inp.size(0) x = inp.new_zeros((batch_size, self.out_feat)) for i in range(batch_size): x[i] = inp[i] @ self.weight[gate_long[i]].t() return x