Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastMoE
Commits
c0a3a425
Commit
c0a3a425
authored
Feb 21, 2021
by
Rick Ho
Browse files
change expert_fn structure
parent
a88d1124
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
19 additions
and
23 deletions
+19
-23
fmoe/layers.py
fmoe/layers.py
+18
-19
fmoe/transformer.py
fmoe/transformer.py
+1
-4
No files found.
fmoe/layers.py
View file @
c0a3a425
...
...
@@ -112,8 +112,8 @@ def _fmoe_general_global_forward(inp, gate, expert_fn, num_expert, world_size):
class
FMoE
(
nn
.
Module
):
r
'''
A general moe implementation that supports an arbitrary module as the
expert
Either `expert` or `expert_fn` is required
.
A general moe implementation that supports an arbitrary module as the
expert
.
* `num_expert` stands for the number of experts on **each** worker.
* `world_size` stands for the total number of workers that contains
different experts.
...
...
@@ -126,12 +126,9 @@ class FMoE(nn.Module):
* `gate` is a gate class which can found in `fmoe.gates`.
* `expert` can be specified as a module class, it is used to generate
`num_expert` expert modules.
* `expert_fn` is specified as a callable object or a function, it will be
called during forward, giving the input tensor (contiguous) and the array of
the number of input feature to each expert as input.
'''
def
__init__
(
self
,
num_expert
=
32
,
d_model
=
1024
,
world_size
=
1
,
mp_group
=
None
,
top_k
=
2
,
gate
=
NaiveGate
,
expert
=
None
,
expert_fn
=
None
):
top_k
=
2
,
gate
=
NaiveGate
,
expert
=
None
):
super
().
__init__
()
self
.
num_expert
=
num_expert
self
.
d_model
=
d_model
...
...
@@ -145,10 +142,12 @@ class FMoE(nn.Module):
self
.
mp_rank
=
mp_group
.
rank
()
self
.
top_k
=
top_k
self
.
gate
=
gate
(
d_model
,
num_expert
,
world_size
,
top_k
)
if
expert_fn
is
None
:
assert
expert
is
not
None
,
'Either expert or expert_fn should be set'
if
expert
is
not
None
:
self
.
experts
=
[
expert
(
d_model
)
for
_
in
range
(
num_expert
)]
def
expert_fn
(
inp
,
fwd_expert_count
):
def
expert_fn
(
self
,
inp
,
fwd_expert_count
):
if
isinstance
(
self
.
experts
,
nn
.
Module
):
return
self
.
experts
(
inp
,
fwd_expert_count
)
outputs
=
[]
base_idx
=
0
for
i
in
range
(
self
.
num_expert
):
...
...
@@ -157,7 +156,6 @@ class FMoE(nn.Module):
outputs
.
append
(
self
.
experts
[
i
](
inp_slice
))
base_idx
+=
batch_size
return
torch
.
cat
(
outputs
,
dim
=
0
)
self
.
expert_fn
=
expert_fn
def
mark_parallel_comm
(
self
):
r
'''
...
...
@@ -193,7 +191,8 @@ class FMoE(nn.Module):
gate_top_k_idx
,
gate_score
=
self
.
gate
(
inp
)
# to: (BxLxtop_k) x d_model
inp
=
inp
.
repeat_interleave
(
repeats
=
self
.
top_k
,
dim
=
0
)
x
=
_fmoe_general_global_forward
(
inp
,
gate_top_k_idx
,
self
.
expert_fn
,
expert_fn
=
lambda
inp
,
fec
:
self
.
expert_fn
(
inp
,
fec
)
x
=
_fmoe_general_global_forward
(
inp
,
gate_top_k_idx
,
expert_fn
,
self
.
num_expert
,
self
.
world_size
)
# to: (BxL) x top_k x d_model
x
=
x
.
view
(
-
1
,
self
.
top_k
,
self
.
d_model
)
...
...
fmoe/transformer.py
View file @
c0a3a425
...
...
@@ -49,11 +49,8 @@ class FMoETransformerMLP(FMoE):
top_k
=
2
,
pre_lnorm
=
False
):
def
expert_fn
(
inp
,
gate
):
return
self
.
experts
(
inp
,
gate
)
super
().
__init__
(
num_expert
=
num_expert
,
d_model
=
d_model
,
gate
=
gate
,
top_k
=
top_k
,
world_size
=
world_size
,
mp_group
=
mp_group
,
expert_fn
=
expert_fn
)
top_k
=
top_k
,
world_size
=
world_size
,
mp_group
=
mp_group
)
self
.
experts
=
_Expert
(
num_expert
,
d_model
,
d_hidden
,
activation
,
rank
=
self
.
mp_rank
)
self
.
pre_lnorm
=
pre_lnorm
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment