Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastMoE
Commits
baae8fb9
Unverified
Commit
baae8fb9
authored
May 22, 2021
by
Rick Ho
Committed by
GitHub
May 22, 2021
Browse files
Merge pull request #31 from laekov/gate
Reconstruct gate and add gshard / switch
parents
3c42c892
8d14dd29
Changes
43
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
86 additions
and
13 deletions
+86
-13
tests/test_local_exchange.py
tests/test_local_exchange.py
+40
-0
tests/test_numerical.py
tests/test_numerical.py
+4
-5
tests/test_zero.py
tests/test_zero.py
+42
-8
No files found.
tests/test_local_exchange.py
0 → 100644
View file @
baae8fb9
import
sys
from
collections
import
OrderedDict
from
typing
import
List
,
Type
,
Union
import
pytest
import
torch
import
torch.nn
as
nn
import
numpy
as
np
from
copy
import
deepcopy
from
fmoe.functions
import
MOEGather
,
MOEScatter
,
count_by_gate
from
test_numerical
import
_assert_numerical
@
pytest
.
mark
.
parametrize
(
"n_expert"
,
[
1
,
4
,
8
])
@
pytest
.
mark
.
parametrize
(
"topk"
,
[
1
,
2
])
@
pytest
.
mark
.
parametrize
(
"batch_size"
,
[
12
])
@
pytest
.
mark
.
parametrize
(
"d_model"
,
[
6
])
@
pytest
.
mark
.
parametrize
(
"world_size"
,
[
1
])
def
test_scatter
(
n_expert
,
topk
,
batch_size
,
d_model
,
world_size
):
gate_idx
=
torch
.
randint
(
n_expert
+
1
,
(
batch_size
,
topk
))
-
1
gate_idx
=
gate_idx
.
long
().
cuda
()
pos
,
lec
,
gec
=
count_by_gate
(
gate_idx
,
n_expert
,
world_size
)
fbs
=
int
(
gec
.
sum
().
item
())
inp
=
torch
.
rand
(
batch_size
,
d_model
).
cuda
()
inp
.
requires_grad
=
True
out
=
MOEScatter
.
apply
(
inp
,
pos
%
batch_size
,
lec
,
gec
,
fbs
,
world_size
)
out
.
sum
().
backward
()
inp_raw
=
inp
.
data
.
clone
()
out_raw
=
torch
.
empty
(
pos
.
shape
[
0
],
d_model
,
device
=
inp
.
device
,
dtype
=
inp
.
dtype
)
# out_raw.sum().backward()
for
i
,
f
in
enumerate
(
pos
.
cpu
()):
out_raw
[
i
]
=
inp
[
f
%
batch_size
]
_assert_numerical
([
'out'
],
[
out
],
[
out_raw
],
0
)
# TODO: check grad
if
__name__
==
'__main__'
:
test_scatter
(
4
,
2
,
8
,
6
,
1
)
tests/test_numerical.py
View file @
baae8fb9
...
...
@@ -24,7 +24,7 @@ def _perform_forward(
inp
=
torch
.
rand
(
batch_size
,
d_model
).
type
(
data_type
).
cuda
()
if
mp_group
:
if
mp_group
is
not
None
:
group_sender
=
rank
//
mp_group
.
size
()
*
mp_group
.
size
()
torch
.
distributed
.
broadcast
(
inp
,
group_sender
,
group
=
mp_group
)
torch
.
distributed
.
broadcast
(
...
...
@@ -38,10 +38,9 @@ def _perform_forward(
inp
.
requires_grad
=
True
inp_raw
.
requires_grad
=
True
gate_idx
,
gate_score
,
_
=
moe
.
gate
(
inp_raw
)
inp_repeated
=
inp_raw
.
repeat_interleave
(
repeats
=
top_k
,
dim
=
0
)
gate_idx
,
gate_score
=
moe
.
gate
(
inp_raw
)
moe_out
=
moe
(
inp
)
raw_out
=
moe_raw
(
inp_r
epeated
,
gate_idx
,
gate_score
)
raw_out
=
moe_raw
(
inp_r
aw
,
gate_idx
,
gate_score
)
raw_out
.
mean
().
backward
()
moe_out
.
mean
().
backward
()
...
...
@@ -51,7 +50,7 @@ def _perform_forward(
def
_assert_numerical
(
names
,
moe_out_list
,
raw_out_list
,
rank
,
precision
=
1e-3
):
for
name
,
mo
,
ro
in
zip
(
names
,
moe_out_list
,
raw_out_list
):
err
=
(
mo
-
ro
).
abs
().
sum
()
err
=
(
mo
-
ro
).
abs
().
max
()
print
(
"Rank {} {} abs err {}"
.
format
(
rank
,
name
,
err
))
if
err
>
precision
:
sys
.
stderr
.
write
(
f
"===========
{
name
}
moe out ==============
\n
"
)
...
...
tests/test_zero.py
View file @
baae8fb9
import
os
import
sys
import
json
import
torch
from
fmoe.layers
import
_fmoe_general_global_forward
from
fmoe
import
FMoETransformerMLP
from
test_ddp
import
_run_distributed
class
ConstantGate
(
torch
.
nn
.
Module
):
def
__init__
(
self
,
d_model
,
num_expert
,
world_size
,
top_k
=
1
):
...
...
@@ -9,13 +14,24 @@ class ConstantGate(torch.nn.Module):
self
.
top_k
=
top_k
def
forward
(
self
,
inp
):
idx
=
torch
.
zeros
((
inp
.
shape
[
0
]
*
self
.
top_k
,
),
dtype
=
torch
.
int64
,
idx
=
torch
.
zeros
((
inp
.
shape
[
0
]
,
self
.
top_k
),
dtype
=
torch
.
int64
,
device
=
inp
.
device
)
score
=
torch
.
ones
((
inp
.
shape
[
0
],
1
,
self
.
top_k
),
device
=
inp
.
device
)
/
2
return
idx
,
score
,
None
return
idx
,
score
def
test_zero_fwd
(
num_expert
=
2
,
batch_size
=
4
,
d_hidden
=
8
,
world_size
=
1
):
_run_distributed
(
'_test_zero_fwd'
,
1
,
{
'num_expert'
:
num_expert
,
'batch_size'
:
batch_size
,
'd_hidden'
:
d_hidden
},
script
=
__file__
)
def
_test_zero_fwd
(
num_expert
=
2
,
batch_size
=
4
,
d_hidden
=
8
,
world_size
=
1
):
inp
=
torch
.
rand
(
batch_size
,
d_hidden
).
cuda
()
gate
=
torch
.
zeros
(
batch_size
,
dtype
=
torch
.
int64
).
cuda
()
x
=
_fmoe_general_global_forward
(
inp
,
gate
,
lambda
x
,
y
:
x
,
num_expert
,
...
...
@@ -23,6 +39,17 @@ def test_zero_fwd(num_expert=2, batch_size=4, d_hidden=8, world_size=1):
def
test_zero_transformer
(
num_expert
=
2
,
batch_size
=
4
,
d_hidden
=
8
,
world_size
=
1
):
_run_distributed
(
'_test_zero_transformer'
,
1
,
{
'num_expert'
:
num_expert
,
'batch_size'
:
batch_size
,
'd_hidden'
:
d_hidden
},
script
=
__file__
)
def
_test_zero_transformer
(
num_expert
=
2
,
batch_size
=
4
,
d_hidden
=
8
,
world_size
=
1
):
inp
=
torch
.
rand
(
batch_size
,
d_hidden
).
cuda
()
model
=
FMoETransformerMLP
(
num_expert
,
d_hidden
,
d_hidden
*
4
,
world_size
,
gate
=
ConstantGate
).
cuda
()
...
...
@@ -30,9 +57,16 @@ def test_zero_transformer(num_expert=2, batch_size=4, d_hidden=8, world_size=1):
if
__name__
==
'__main__'
:
if
len
(
sys
.
argv
)
>=
3
:
args
=
json
.
loads
(
sys
.
argv
[
2
])
os
.
environ
[
"RANK"
]
=
os
.
environ
.
get
(
"OMPI_COMM_WORLD_RANK"
,
"0"
)
os
.
environ
[
"WORLD_SIZE"
]
=
os
.
environ
.
get
(
"OMPI_COMM_WORLD_SIZE"
,
"1"
)
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
os
.
environ
[
"RANK"
]
torch
.
distributed
.
init_process_group
(
backend
=
"nccl"
)
torch
.
cuda
.
set_device
(
torch
.
distributed
.
get_rank
())
args
[
'world_size'
]
=
torch
.
distributed
.
get_world_size
()
locals
()[
sys
.
argv
[
1
]](
**
args
)
else
:
# test_zero_fwd(world_size=torch.distributed.get_world_size())
test_zero_transformer
(
num_expert
=
16
,
batch_size
=
4096
,
d_hidden
=
1024
,
world_size
=
torch
.
distributed
.
get_world_size
()
)
world_size
=
1
)
print
(
'done'
)
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment