Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastMoE
Commits
b1dd8572
Commit
b1dd8572
authored
Dec 08, 2020
by
Jiezhong Qiu
Browse files
multihead moe
parent
510ac924
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
85 additions
and
0 deletions
+85
-0
pytorch/mem_transformer.py
pytorch/mem_transformer.py
+85
-0
No files found.
pytorch/mem_transformer.py
View file @
b1dd8572
...
@@ -99,6 +99,91 @@ def my_topk(x, k, inplace=True):
...
@@ -99,6 +99,91 @@ def my_topk(x, k, inplace=True):
top_idx
=
torch
.
cat
((
top1_idx
,
top2_idx
),
dim
=-
1
)
top_idx
=
torch
.
cat
((
top1_idx
,
top2_idx
),
dim
=-
1
)
return
top_val
,
top_idx
return
top_val
,
top_idx
class
MultiHeadHierarchicalMoEPositionwiseFF
(
nn
.
Module
):
def
__init__
(
self
,
d_model
,
d_inner
,
dropout
,
pre_lnorm
=
False
,
n_block
=
16
,
top_block
=
2
):
super
(
MultiHeadHierarchicalMoEPositionwiseFF
,
self
).
__init__
()
print
(
"MultiHeadHierarchicalMoEPositionwiseFF"
)
assert
d_inner
%
n_block
==
0
assert
top_block
in
[
1
,
2
]
self
.
top_block
=
top_block
self
.
n_block
=
n_block
d_block
=
d_inner
//
n_block
self
.
d_block
=
d_block
self
.
d_model
=
d_model
self
.
d_inner
=
d_inner
self
.
dropout
=
dropout
self
.
block_net_W
=
nn
.
Parameter
(
torch
.
Tensor
(
d_model
,
top_block
,
n_block
))
self
.
block_net_b
=
nn
.
Parameter
(
torch
.
Tensor
(
top_block
,
n_block
))
self
.
W1
=
nn
.
Parameter
(
torch
.
Tensor
(
n_block
,
d_block
,
d_model
))
self
.
b1
=
nn
.
Parameter
(
torch
.
Tensor
(
n_block
,
d_block
))
self
.
W2
=
nn
.
Parameter
(
torch
.
Tensor
(
n_block
,
d_block
,
d_model
))
self
.
b2
=
nn
.
Parameter
(
torch
.
Tensor
(
d_model
))
self
.
layer_norm
=
nn
.
LayerNorm
(
d_model
)
self
.
pre_lnorm
=
pre_lnorm
ratio
=
top_block
/
n_block
self
.
dropout_middle
=
nn
.
Dropout
(
dropout
*
ratio
)
self
.
dropout_final
=
nn
.
Dropout
(
dropout
)
# self.scale = 1 / (d_model ** 0.5)
self
.
reset_parameter
()
def
reset_parameter
(
self
):
temp
=
nn
.
Linear
(
self
.
d_model
,
self
.
d_inner
)
self
.
W1
.
data
=
temp
.
weight
.
data
.
view
(
self
.
n_block
,
self
.
d_block
,
self
.
d_model
)
self
.
b1
.
data
=
temp
.
bias
.
data
.
view
(
self
.
n_block
,
self
.
d_block
)
temp
=
nn
.
Linear
(
self
.
d_inner
,
self
.
d_model
)
self
.
W2
.
data
=
temp
.
weight
.
data
.
transpose
(
0
,
1
).
contiguous
().
view
(
self
.
n_block
,
self
.
d_block
,
self
.
d_model
)
self
.
b2
.
data
=
temp
.
bias
.
data
for
i
in
range
(
self
.
top_block
):
temp
=
nn
.
Linear
(
self
.
d_model
,
self
.
n_block
)
self
.
block_net_W
[:,
i
].
data
=
temp
.
weight
.
data
.
transpose
(
0
,
1
).
contiguous
()
self
.
block_net_b
[:,
i
].
data
=
temp
.
bias
.
data
def
forward
(
self
,
inp
):
residual
=
inp
if
self
.
pre_lnorm
:
inp
=
self
.
layer_norm
(
inp
)
block
=
torch
.
einsum
(
"ibd,dan->iban"
,
(
inp
,
self
.
block_net_W
))
+
self
.
block_net_b
# [.. x top_block x n_block ]
# block_val, block_idx = my_topk(block, k=1)
block_val
,
block_idx
=
torch
.
topk
(
block
,
k
=
1
,
dim
=-
1
,
largest
=
True
,
sorted
=
False
)
# [.. x top_k x 1]
block_val
=
block_val
.
squeeze
(
-
1
)
block_idx
=
block_idx
.
squeeze
(
-
1
)
gate
=
F
.
softmax
(
block_val
,
dim
=-
1
)
W1_block
=
self
.
W1
[
block_idx
]
# [.. x top_k x d_block x d_model]
b1_block
=
self
.
b1
[
block_idx
]
# [.. x top_k x d_block]
x
=
torch
.
einsum
(
'ibd,ibnhd->ibnh'
,
(
inp
,
W1_block
))
+
b1_block
# [.. x top_k x d_block]
# x = x + block_val.unsqueeze(-1) # somehow like residual
x
=
x
*
gate
.
unsqueeze
(
-
1
)
relu_out
=
F
.
relu
(
x
)
relu_out
=
self
.
dropout_middle
(
relu_out
)
W2_block
=
self
.
W2
[
block_idx
]
# [.. x top_k x d_model]
core_out
=
torch
.
einsum
(
'ibnh,ibnhd->ibd'
,
(
x
,
W2_block
))
+
self
.
b2
# [.. x d_model]
core_out
=
self
.
dropout_final
(
core_out
)
output
=
core_out
+
residual
if
not
self
.
pre_lnorm
:
output
=
self
.
layer_norm
(
output
)
return
output
class
HierarchicalMoEPositionwiseFF
(
nn
.
Module
):
class
HierarchicalMoEPositionwiseFF
(
nn
.
Module
):
def
__init__
(
self
,
d_model
,
d_inner
,
dropout
,
pre_lnorm
=
False
,
n_block
=
16
,
top_block
=
2
):
def
__init__
(
self
,
d_model
,
d_inner
,
dropout
,
pre_lnorm
=
False
,
n_block
=
16
,
top_block
=
2
):
super
(
HierarchicalMoEPositionwiseFF
,
self
).
__init__
()
super
(
HierarchicalMoEPositionwiseFF
,
self
).
__init__
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment