Commit 6b5a34cc authored by Jiezhong Qiu's avatar Jiezhong Qiu
Browse files

format with black

parent cf9fd12a
...@@ -366,46 +366,58 @@ class DistributedDataParallel(DistributedGroupedDataParallel): ...@@ -366,46 +366,58 @@ class DistributedDataParallel(DistributedGroupedDataParallel):
""" """
return self.module.load_state_dict(*args, **kwargs) return self.module.load_state_dict(*args, **kwargs)
def get_fmoe_checkpoint_name(checkpoints_path, iteration,
release=False, data_parallel_rank=-1): def get_fmoe_checkpoint_name(
checkpoints_path, iteration, release=False, data_parallel_rank=-1
):
"""A unified checkpoint name, allowing specifying a data parallel rank""" """A unified checkpoint name, allowing specifying a data parallel rank"""
from megatron import mpu from megatron import mpu
from megatron.checkpointing import get_checkpoint_name from megatron.checkpointing import get_checkpoint_name
if data_parallel_rank == -1: if data_parallel_rank == -1:
data_parallel_rank = mpu.get_data_parallel_rank() data_parallel_rank = mpu.get_data_parallel_rank()
if data_parallel_rank == 0: if data_parallel_rank == 0:
return get_checkpoint_name(checkpoints_path, iteration, release) return get_checkpoint_name(checkpoints_path, iteration, release)
if release: if release:
directory = 'release' directory = "release"
else: else:
directory = 'iter_{:07d}'.format(iteration) directory = "iter_{:07d}".format(iteration)
# Use both the tensor and pipeline MP rank. # Use both the tensor and pipeline MP rank.
if mpu.get_pipeline_model_parallel_world_size() == 1: if mpu.get_pipeline_model_parallel_world_size() == 1:
return os.path.join(checkpoints_path, directory, return os.path.join(
'mp_rank_{:02d}_dp_rank_{:04d}'.format( checkpoints_path,
mpu.get_tensor_model_parallel_rank(), directory,
data_parallel_rank "mp_rank_{:02d}_dp_rank_{:04d}".format(
), mpu.get_tensor_model_parallel_rank(), data_parallel_rank
'model_optim_rng.pt') ),
return os.path.join(checkpoints_path, directory, "model_optim_rng.pt",
'mp_rank_{:02d}_{:03d}_dp_rank_{:04d}'.format( )
mpu.get_tensor_model_parallel_rank(), return os.path.join(
mpu.get_pipeline_model_parallel_rank(), checkpoints_path,
data_parallel_rank directory,
), "mp_rank_{:02d}_{:03d}_dp_rank_{:04d}".format(
'model_optim_rng.pt') mpu.get_tensor_model_parallel_rank(),
mpu.get_pipeline_model_parallel_rank(),
data_parallel_rank,
),
"model_optim_rng.pt",
)
def save_checkpoint(iteration, model, optimizer, lr_scheduler): def save_checkpoint(iteration, model, optimizer, lr_scheduler):
"""Save a model checkpoint with expert parallel """ """Save a model checkpoint with expert parallel """
# TODO: update patch # TODO: update patch
from megatron import get_args from megatron import get_args
from megatron import mpu from megatron import mpu
expert_dp_comm = 'none' from megatron import print_rank_last
expert_dp_comm = "none"
if mpu.get_data_parallel_rank() == 0: if mpu.get_data_parallel_rank() == 0:
# at dp rank 0, we still follows the native load_checkpoint by megatron # at dp rank 0, we still follows the native load_checkpoint by megatron
from megatron.checkpointing import save_checkpoint as save_checkpoint_native from megatron.checkpointing import save_checkpoint as save_checkpoint_native
save_checkpoint_native(iteration, model, optimizer, lr_scheduler) save_checkpoint_native(iteration, model, optimizer, lr_scheduler)
return return
...@@ -415,16 +427,17 @@ def save_checkpoint(iteration, model, optimizer, lr_scheduler): ...@@ -415,16 +427,17 @@ def save_checkpoint(iteration, model, optimizer, lr_scheduler):
if isinstance(model, DistributedDataParallel): if isinstance(model, DistributedDataParallel):
model = model.module model = model.module
if torch.distributed.get_rank() == 0: print_rank_last(
print('saving checkpoint at iteration {:7d} to {}'.format( "saving checkpoint at iteration {:7d} to {}".format(iteration, args.save)
iteration, args.save), flush=True) )
# Arguments, iteration, and model. # Arguments, iteration, and model.
state_dict = {} state_dict = {}
state_dict['model'] = model.state_dict_for_save_checkpoint( state_dict["model"] = model.state_dict_for_save_checkpoint(
keep_vars=(mpu.get_data_parallel_rank() > 0)) keep_vars=(mpu.get_data_parallel_rank() > 0)
)
def extract_expert_param(state_dict, expert_dp_comm='none'): def extract_expert_param(state_dict, expert_dp_comm="none"):
state_dict_new = state_dict.__class__() state_dict_new = state_dict.__class__()
for k, v in state_dict.items(): for k, v in state_dict.items():
# megatron uses both dict and OrderedDict in its state_dict # megatron uses both dict and OrderedDict in its state_dict
...@@ -432,72 +445,80 @@ def save_checkpoint(iteration, model, optimizer, lr_scheduler): ...@@ -432,72 +445,80 @@ def save_checkpoint(iteration, model, optimizer, lr_scheduler):
v_new = extract_expert_param(v, expert_dp_comm) v_new = extract_expert_param(v, expert_dp_comm)
if len(v_new) > 0: if len(v_new) > 0:
state_dict_new[k] = v_new state_dict_new[k] = v_new
elif hasattr(v, 'dp_comm') and v.dp_comm == expert_dp_comm: elif hasattr(v, "dp_comm") and v.dp_comm == expert_dp_comm:
state_dict_new[k] = v.detach() state_dict_new[k] = v.detach()
return state_dict_new return state_dict_new
state_dict['model'] = extract_expert_param( state_dict["model"] = extract_expert_param(state_dict["model"], expert_dp_comm)
state_dict['model'],
expert_dp_comm)
# Optimizer stuff. # Optimizer stuff.
if not args.no_save_optim: if not args.no_save_optim:
if optimizer is not None: if optimizer is not None:
state_dict['optimizer'] = optimizer.state_dict() state_dict["optimizer"] = optimizer.state_dict()
param_global_idx = 0 param_global_idx = 0
for param_group in optimizer.optimizer.param_groups: for param_group in optimizer.optimizer.param_groups:
for param in param_group['params']: for param in param_group["params"]:
if not (hasattr(param, 'dp_comm') and \ if not (
param.dp_comm == expert_dp_comm): hasattr(param, "dp_comm") and param.dp_comm == expert_dp_comm
):
# this parameter is not an expert parameter # this parameter is not an expert parameter
# thus there is no need to save its state in current rank # thus there is no need to save its state in current rank
# since it has been saved by data parallel rank 0 # since it has been saved by data parallel rank 0
if args.fp16: if args.fp16:
# fp16 optimizer may have empty state due to overflow # fp16 optimizer may have empty state due to overflow
state_dict['optimizer']['optimizer']['state'].pop( state_dict["optimizer"]["optimizer"]["state"].pop(
param_global_idx, None) param_global_idx, None
)
else: else:
state_dict['optimizer']['state'].pop( state_dict["optimizer"]["state"].pop(param_global_idx)
param_global_idx)
param_global_idx += 1 param_global_idx += 1
if args.fp16: if args.fp16:
state_dict['optimizer']['optimizer'].pop('param_groups') state_dict["optimizer"]["optimizer"].pop("param_groups")
# fp32_from_fp16_params in state_dict is not a copy # fp32_from_fp16_params in state_dict is not a copy
# but a reference to optimizer.fp32_from_fp16_params, # but a reference to optimizer.fp32_from_fp16_params,
# changing it in state_dict will change # changing it in state_dict will change
# optimizer.fp32_from_fp16_params as well # optimizer.fp32_from_fp16_params as well
# thus we create an empty fp32_from_fp16_params in state_dict # thus we create an empty fp32_from_fp16_params in state_dict
# and only insert expert parameters. # and only insert expert parameters.
fp32_from_fp16_params = \ fp32_from_fp16_params = state_dict["optimizer"]["fp32_from_fp16_params"]
state_dict['optimizer']['fp32_from_fp16_params'] state_dict["optimizer"]["fp32_from_fp16_params"] = []
state_dict['optimizer']['fp32_from_fp16_params'] = []
for param_group in fp32_from_fp16_params: for param_group in fp32_from_fp16_params:
param_group_copy = [] param_group_copy = []
for param in param_group: for param in param_group:
param_copy = param if hasattr(param, 'dp_comm') \ param_copy = (
and param.dp_comm == expert_dp_comm else None param
if hasattr(param, "dp_comm")
and param.dp_comm == expert_dp_comm
else None
)
param_group_copy.append(param_copy) param_group_copy.append(param_copy)
state_dict['optimizer']['fp32_from_fp16_params'].append( state_dict["optimizer"]["fp32_from_fp16_params"].append(
param_group_copy) param_group_copy
)
else: else:
state_dict['optimizer'].pop('param_groups') state_dict["optimizer"].pop("param_groups")
# Save. # Save.
checkpoint_name = get_fmoe_checkpoint_name(args.save, iteration) checkpoint_name = get_fmoe_checkpoint_name(args.save, iteration)
from megatron.checkpointing import ensure_directory_exists from megatron.checkpointing import ensure_directory_exists
from megatron.checkpointing import get_checkpoint_tracker_filename from megatron.checkpointing import get_checkpoint_tracker_filename
ensure_directory_exists(checkpoint_name) ensure_directory_exists(checkpoint_name)
torch.save(state_dict, checkpoint_name) torch.save(state_dict, checkpoint_name)
# Wait so everyone is done (necessary) # Wait so everyone is done (necessary)
torch.distributed.barrier() torch.distributed.barrier()
if torch.distributed.get_rank() == 0: if torch.distributed.get_rank() == 0:
print(' successfully saved checkpoint at iteration {:7d} to {}'.format( print(
iteration, args.save), flush=True) " successfully saved checkpoint at iteration {:7d} to {}".format(
iteration, args.save
),
flush=True,
)
# And update the latest iteration # And update the latest iteration
if torch.distributed.get_rank() == 0: if torch.distributed.get_rank() == 0:
tracker_filename = get_checkpoint_tracker_filename(args.save) tracker_filename = get_checkpoint_tracker_filename(args.save)
with open(tracker_filename, 'w') as f: with open(tracker_filename, "w") as f:
f.write(str(iteration)) f.write(str(iteration))
# Wait so everyone is done (not necessary) # Wait so everyone is done (not necessary)
torch.distributed.barrier() torch.distributed.barrier()
...@@ -507,6 +528,7 @@ def merge_state_dict(state_dict_rank0, state_dict_local, fp16): ...@@ -507,6 +528,7 @@ def merge_state_dict(state_dict_rank0, state_dict_local, fp16):
"""merge two state dicts, one from data parallel rank 0, """merge two state dicts, one from data parallel rank 0,
another only contains expert states""" another only contains expert states"""
from megatron import print_rank_last from megatron import print_rank_last
def merge_model(state_dict_rank0, state_dict_local): def merge_model(state_dict_rank0, state_dict_local):
for k, v in state_dict_local.items(): for k, v in state_dict_local.items():
# megatron uses both dict and OrderedDict in its state_dict # megatron uses both dict and OrderedDict in its state_dict
...@@ -514,37 +536,43 @@ def merge_state_dict(state_dict_rank0, state_dict_local, fp16): ...@@ -514,37 +536,43 @@ def merge_state_dict(state_dict_rank0, state_dict_local, fp16):
print_rank_last("[merge model] go recursively to {}".format(k)) print_rank_last("[merge model] go recursively to {}".format(k))
merge_model(state_dict_rank0[k], v) merge_model(state_dict_rank0[k], v)
else: else:
before = state_dict_rank0[k].sum().item()
state_dict_rank0[k] = v state_dict_rank0[k] = v
after = state_dict_rank0[k].sum().item()
print_rank_last("[merge model] copy parameter {}, \ merge_model(state_dict_rank0["model"], state_dict_local["model"])
before.sum={:7f}, after.sum={:7f}".format(k, before, after))
merge_model(state_dict_rank0['model'], state_dict_local['model']) optimizer_rank0 = (
state_dict_rank0["optimizer"]["optimizer"]
optimizer_rank0 = state_dict_rank0['optimizer']['optimizer'] \ if fp16
if fp16 else state_dict_rank0['optimizer'] else state_dict_rank0["optimizer"]
optimizer_local = state_dict_local['optimizer']['optimizer'] \ )
if fp16 else state_dict_local['optimizer'] optimizer_local = (
state_dict_local["optimizer"]["optimizer"]
for k, v in optimizer_local['state'].items(): if fp16
before = {kk: vv.sum().item() \ else state_dict_local["optimizer"]
for kk, vv in optimizer_rank0['state'][k].items()} )
optimizer_rank0['state'][k] = v
after = {kk: vv.sum().item() \ for k, v in optimizer_local["state"].items():
for kk, vv in optimizer_rank0['state'][k].items()} optimizer_rank0["state"][k] = v
print_rank_last("[merge optimizer] copy {}, \
before.sum={}, after.sum={}".format(k, str(before), str(after)))
if fp16: if fp16:
for group_idx, param_group in enumerate(state_dict_local['optimizer']['fp32_from_fp16_params']): for group_idx, param_group in enumerate(
state_dict_local["optimizer"]["fp32_from_fp16_params"]
):
for param_in_group_idx, param in enumerate(param_group): for param_in_group_idx, param in enumerate(param_group):
if param is not None: if param is not None:
state_dict_rank0['optimizer']['fp32_from_fp16_params'][group_idx][param_in_group_idx] = param state_dict_rank0["optimizer"]["fp32_from_fp16_params"][group_idx][
print_rank_last("[merge fp32_from_fp16_params] copy parameter ({:d}, {:d})".format(group_idx, param_in_group_idx)) param_in_group_idx
] = param
print_rank_last(
"[merge fp32_from_fp16_params] copy parameter ({:d}, {:d})".format(
group_idx, param_in_group_idx
)
)
return state_dict_rank0 return state_dict_rank0
def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load'):
def load_checkpoint(model, optimizer, lr_scheduler, load_arg="load"):
"""Load a model checkpoint and return the iteration.""" """Load a model checkpoint and return the iteration."""
from megatron import get_args from megatron import get_args
...@@ -554,9 +582,11 @@ def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load'): ...@@ -554,9 +582,11 @@ def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load'):
from megatron.checkpointing import set_checkpoint_version from megatron.checkpointing import set_checkpoint_version
from megatron.checkpointing import check_checkpoint_args from megatron.checkpointing import check_checkpoint_args
from megatron.checkpointing import update_num_microbatches from megatron.checkpointing import update_num_microbatches
if mpu.get_data_parallel_rank() == 0: if mpu.get_data_parallel_rank() == 0:
# at dp rank 0, we still follow the native load_checkpoint by megatron # at dp rank 0, we still follow the native load_checkpoint by megatron
from megatron.checkpointing import load_checkpoint as load_checkpoint_native from megatron.checkpointing import load_checkpoint as load_checkpoint_native
return load_checkpoint_native(model, optimizer, lr_scheduler, load_arg) return load_checkpoint_native(model, optimizer, lr_scheduler, load_arg)
args = get_args() args = get_args()
...@@ -569,130 +599,154 @@ def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load'): ...@@ -569,130 +599,154 @@ def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load'):
# If no tracker file, return iretation zero. # If no tracker file, return iretation zero.
if not os.path.isfile(tracker_filename): if not os.path.isfile(tracker_filename):
print_rank_last('WARNING: could not find the metadata file {} '.format( print_rank_last(
tracker_filename)) "WARNING: could not find the metadata file {} ".format(tracker_filename)
print_rank_last(' will not load any checkpoints and will start from ' )
'random') print_rank_last(
" will not load any checkpoints and will start from " "random"
)
return 0 return 0
# Otherwise, read the tracker file and either set the iteration or # Otherwise, read the tracker file and either set the iteration or
# mark it as a release checkpoint. # mark it as a release checkpoint.
iteration = 0 iteration = 0
release = False release = False
with open(tracker_filename, 'r') as f: with open(tracker_filename, "r") as f:
metastring = f.read().strip() metastring = f.read().strip()
try: try:
iteration = int(metastring) iteration = int(metastring)
except ValueError: except ValueError:
release = metastring == 'release' release = metastring == "release"
if not release: if not release:
print_rank_last('ERROR: Invalid metadata file {}. Exiting'.format( print_rank_last(
tracker_filename)) "ERROR: Invalid metadata file {}. Exiting".format(tracker_filename)
)
sys.exit() sys.exit()
assert iteration > 0 or release, 'error parsing metadata file {}'.format( assert iteration > 0 or release, "error parsing metadata file {}".format(
tracker_filename) tracker_filename
)
# Checkpoint. # Checkpoint.
checkpoint_name_rank0 = get_fmoe_checkpoint_name( checkpoint_name_rank0 = get_fmoe_checkpoint_name(load_dir, iteration, release, 0)
load_dir, iteration, release, 0)
checkpoint_name_local = get_fmoe_checkpoint_name( checkpoint_name_local = get_fmoe_checkpoint_name(
load_dir, iteration, release, mpu.get_data_parallel_rank()) load_dir, iteration, release, mpu.get_data_parallel_rank()
print_rank_last(' loading checkpoint at rank 0 from {} and rank {} from {} at iteration {}, will merge them later'.format( )
checkpoint_name_rank0, mpu.get_data_parallel_rank(), print_rank_last(
checkpoint_name_local, iteration)) " loading checkpoint at rank 0 from {} and rank {} from {} at iteration {}, will merge them later".format(
checkpoint_name_rank0,
mpu.get_data_parallel_rank(),
checkpoint_name_local,
iteration,
)
)
# Load the checkpoint. # Load the checkpoint.
def load_state_dict(checkpoint_name): def load_state_dict(checkpoint_name):
try: try:
state_dict = torch.load(checkpoint_name, map_location='cpu') state_dict = torch.load(checkpoint_name, map_location="cpu")
except ModuleNotFoundError: except ModuleNotFoundError:
from megatron.fp16_deprecated import loss_scaler from megatron.fp16_deprecated import loss_scaler
# For backward compatibility. # For backward compatibility.
print_rank_last(' > deserializing using the old code structure ...') print_rank_last(" > deserializing using the old code structure ...")
sys.modules['fp16.loss_scaler'] = sys.modules[ sys.modules["fp16.loss_scaler"] = sys.modules[
'megatron.fp16_deprecated.loss_scaler'] "megatron.fp16_deprecated.loss_scaler"
sys.modules['megatron.fp16.loss_scaler'] = sys.modules[ ]
'megatron.fp16_deprecated.loss_scaler'] sys.modules["megatron.fp16.loss_scaler"] = sys.modules[
state_dict = torch.load(checkpoint_name, map_location='cpu') "megatron.fp16_deprecated.loss_scaler"
sys.modules.pop('fp16.loss_scaler', None) ]
sys.modules.pop('megatron.fp16.loss_scaler', None) state_dict = torch.load(checkpoint_name, map_location="cpu")
sys.modules.pop("fp16.loss_scaler", None)
sys.modules.pop("megatron.fp16.loss_scaler", None)
except BaseException: except BaseException:
print_rank_last('could not load the checkpoint') print_rank_last("could not load the checkpoint")
sys.exit() sys.exit()
return state_dict return state_dict
state_dict_rank0 = load_state_dict(checkpoint_name_rank0) state_dict_rank0 = load_state_dict(checkpoint_name_rank0)
state_dict_local = load_state_dict(checkpoint_name_local) state_dict_local = load_state_dict(checkpoint_name_local)
state_dict = merge_state_dict(state_dict_rank0, state_dict_local, args.fp16) state_dict = merge_state_dict(state_dict_rank0, state_dict_local, args.fp16)
# set checkpoint version # set checkpoint version
set_checkpoint_version(state_dict.get('checkpoint_version', 0)) set_checkpoint_version(state_dict.get("checkpoint_version", 0))
# Set iteration. # Set iteration.
if args.finetune or release: if args.finetune or release:
iteration = 0 iteration = 0
else: else:
try: try:
iteration = state_dict['iteration'] iteration = state_dict["iteration"]
except KeyError: except KeyError:
try: # Backward compatible with older checkpoints try: # Backward compatible with older checkpoints
iteration = state_dict['total_iters'] iteration = state_dict["total_iters"]
except KeyError: except KeyError:
print_rank_last('A metadata file exists but unable to load ' print_rank_last(
'iteration from checkpoint {}, exiting'.format( "A metadata file exists but unable to load "
checkpoint_name_local)) "iteration from checkpoint {}, exiting".format(
checkpoint_name_local
)
)
sys.exit() sys.exit()
# Check arguments. # Check arguments.
assert args.consumed_train_samples == 0 assert args.consumed_train_samples == 0
assert args.consumed_valid_samples == 0 assert args.consumed_valid_samples == 0
if 'args' in state_dict: if "args" in state_dict:
checkpoint_args = state_dict['args'] checkpoint_args = state_dict["args"]
check_checkpoint_args(checkpoint_args) check_checkpoint_args(checkpoint_args)
args.consumed_train_samples = getattr(checkpoint_args, args.consumed_train_samples = getattr(
'consumed_train_samples', 0) checkpoint_args, "consumed_train_samples", 0
)
update_num_microbatches(consumed_samples=args.consumed_train_samples) update_num_microbatches(consumed_samples=args.consumed_train_samples)
args.consumed_valid_samples = getattr(checkpoint_args, args.consumed_valid_samples = getattr(
'consumed_valid_samples', 0) checkpoint_args, "consumed_valid_samples", 0
)
else: else:
print_rank_last('could not find arguments in the checkpoint ...') print_rank_last("could not find arguments in the checkpoint ...")
# Model. # Model.
model.load_state_dict(state_dict['model']) model.load_state_dict(state_dict["model"])
# Optimizer. # Optimizer.
if not release and not args.finetune and not args.no_load_optim: if not release and not args.finetune and not args.no_load_optim:
try: try:
if optimizer is not None: if optimizer is not None:
optimizer.load_state_dict(state_dict['optimizer']) optimizer.load_state_dict(state_dict["optimizer"])
if lr_scheduler is not None: if lr_scheduler is not None:
lr_scheduler.load_state_dict(state_dict['lr_scheduler']) lr_scheduler.load_state_dict(state_dict["lr_scheduler"])
except KeyError: except KeyError:
print_rank_last('Unable to load optimizer from checkpoint {}. ' print_rank_last(
'Specify --no-load-optim or --finetune to prevent ' "Unable to load optimizer from checkpoint {}. "
'attempting to load the optimizer state, ' "Specify --no-load-optim or --finetune to prevent "
'exiting ...'.format(checkpoint_name_local)) "attempting to load the optimizer state, "
"exiting ...".format(checkpoint_name_local)
)
sys.exit() sys.exit()
# rng states. # rng states.
if not release and not args.finetune and not args.no_load_rng: if not release and not args.finetune and not args.no_load_rng:
try: try:
random.setstate(state_dict['random_rng_state']) random.setstate(state_dict["random_rng_state"])
np.random.set_state(state_dict['np_rng_state']) np.random.set_state(state_dict["np_rng_state"])
torch.set_rng_state(state_dict['torch_rng_state']) torch.set_rng_state(state_dict["torch_rng_state"])
torch.cuda.set_rng_state(state_dict['cuda_rng_state']) torch.cuda.set_rng_state(state_dict["cuda_rng_state"])
mpu.get_cuda_rng_tracker().set_states( mpu.get_cuda_rng_tracker().set_states(state_dict["rng_tracker_states"])
state_dict['rng_tracker_states'])
except KeyError: except KeyError:
print_rank_last('Unable to load optimizer from checkpoint {}. ' print_rank_last(
'Specify --no-load-rng or --finetune to prevent ' "Unable to load optimizer from checkpoint {}. "
'attempting to load the optimizer state, ' "Specify --no-load-rng or --finetune to prevent "
'exiting ...'.format(checkpoint_name_local)) "attempting to load the optimizer state, "
"exiting ...".format(checkpoint_name_local)
)
sys.exit() sys.exit()
torch.distributed.barrier() torch.distributed.barrier()
print_rank_last(' successfully loaded checkpoint (with expert parametes updated) from {} at iteration {}'.format( print_rank_last(
args.load, iteration)) " successfully loaded checkpoint (with expert parametes updated) from {} at iteration {}".format(
args.load, iteration
)
)
return iteration return iteration
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment