import os import subprocess import torch from setuptools import setup, find_packages from torch.utils.cpp_extension import BuildExtension, CUDAExtension, ROCM_HOME from typing import Optional, Union import subprocess from pathlib import Path # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def check_cuda_torch_binary_vs_bare_metal(cuda_dir): torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") def append_nvcc_threads(nvcc_extra_args): return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( '\nWarning: Torch did not find available GPUs on this system.\n', 'If your intention is to cross-compile, this is not an error.\n' 'By default, FastFold will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n' 'Volta (compute capability 7.0), Turing (compute capability 7.5),\n' 'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n' 'If you wish to cross-compile for a single specific architecture,\n' 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n') print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 10): raise RuntimeError("FastFold requires Pytorch 1.10 or newer.\n" + "The latest stable release can be obtained from https://pytorch.org/") cmdclass = {} ext_modules = [] # Set up macros for forward/backward compatibility hack around # https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e # and # https://github.com/NVIDIA/apex/issues/456 # https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5'] if ROCM_HOME is None: raise RuntimeError( "Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc." ) else: # check_cuda_torch_binary_vs_bare_metal(ROCM_HOME) def cuda_ext_helper(name, sources, extra_cuda_flags): return CUDAExtension( name=name, sources=[ os.path.join('fastfold/model/fastnn/kernel/cuda_native/csrc', path) for path in sources ], include_dirs=[ os.path.join(this_dir, 'fastfold/model/fastnn/kernel/cuda_native/csrc/include'), os.path.join(this_dir, 'fastfold/model/fastnn/kernel/cuda_native/csrc/'), ], extra_compile_args={ 'cxx': ['-O3'] + version_dependent_macros, 'hipcc': append_nvcc_threads(['-O3', '--use_fast_math'] + version_dependent_macros + extra_cuda_flags) }) cc_flag = ['-gencode', 'arch=compute_70,code=sm_70'] extra_cuda_flags = [ '-std=c++14', '-maxrregcount=50', '-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr', '--expt-extended-lambda' ] ext_modules.append( cuda_ext_helper('fastfold_layer_norm_cuda', ['layer_norm_cuda.cpp', 'layer_norm_cuda_kernel.cu'], extra_cuda_flags + cc_flag)) ext_modules.append( cuda_ext_helper('fastfold_softmax_cuda', ['softmax_cuda.cpp', 'softmax_cuda_kernel.cu'], extra_cuda_flags + cc_flag)) def get_sha(pytorch_root: Union[str, Path]) -> str: try: return subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=pytorch_root).decode('ascii').strip() except Exception: return 'Unknown' def get_version_add(sha: Optional[str] = None) -> str: add_version_path = "jax/version.py" if sha != 'Unknown': if sha is None: sha_path = os.getenv('FASTFOLD_DOWNLOAD_PATH', "") sha = get_sha(sha_path) version = 'git' + sha[:7] if os.getenv('FASTFOLD_BUILD_VERSION'): version_dtk = os.getenv('FASTFOLD_BUILD_VERSION', "") version += "." + version_dtk with open(add_version_path, encoding="utf-8", mode="w") as file: file.write("__version__='0.2.21'+'+{}'\n".format(version)) file.write("_minimum_jaxlib_version='0.1.69'\n") file.close() def get_version(): get_version_add() version_file = 'version.py' with open(version_file, encoding='utf-8') as f: exec(compile(f.read(), version_file, 'exec')) return locals()['__version__'] setup( name='fastfold', #version='0.2.0', version=get_version(), packages=find_packages(exclude=( 'assets', 'benchmark', '*.egg-info', )), description= 'Optimizing Protein Structure Prediction Model Training and Inference on GPU Clusters', ext_modules=ext_modules, package_data={'fastfold': ['model/fastnn/kernel/cuda_native/csrc/*']}, cmdclass={'build_ext': BuildExtension} if ext_modules else {}, #install_requires=['einops', 'colossalai'], )