import torch import pytest import os import copy import torch.multiprocessing as mp from functools import partial import fastfold from fastfold.config import model_config from fastfold.model.fastnn.ops import set_chunk_size from fastfold.model.hub import AlphaFold from fastfold.utils.inject_fastnn import inject_fastnn from fastfold.utils.import_weights import import_jax_weights_ from fastfold.utils.test_utils import get_param_path @pytest.fixture(scope="module") def get_openfold_module_and_data(): with torch.no_grad(): config = model_config('model_1') config.globals.inplace = False target_module = AlphaFold(config) import_jax_weights_(target_module, get_param_path()) fast_module = copy.deepcopy(target_module) fast_module = inject_fastnn(fast_module) fast_module = fast_module.extra_msa_stack fast_module = fast_module.cuda().eval() extra_msa_len = 300 seq_len = 64 m = torch.randn((extra_msa_len, seq_len, 64)).cuda() m_mask = torch.ones((extra_msa_len, seq_len)).cuda().to(dtype=m.dtype) m_mask[64:, :] = 0. z = torch.randn((seq_len, seq_len, 128)).cuda() z_mask = torch.ones((seq_len, seq_len)).cuda().to(dtype=z.dtype) data = [m, z, m_mask, z_mask] inputs = [copy.deepcopy(i).cuda() for i in data] target_module = target_module.extra_msa_stack target_module = target_module.eval().cuda() z_out = target_module( inputs[0], inputs[1], msa_mask=inputs[2], pair_mask=inputs[3], chunk_size=None, _mask_trans=config.model._mask_trans) return z_out, config, fast_module, data @pytest.mark.parametrize('world_size', [1, 2]) @pytest.mark.parametrize('chunk_size', [None, 32]) @pytest.mark.parametrize('inplace', [False, True]) def test_state_dict(world_size, chunk_size, inplace, get_openfold_module_and_data): run_func = partial(_test_extramsa_stack, world_size=world_size, chunk_size=chunk_size, inplace=inplace, get_openfold_module_and_data=get_openfold_module_and_data) mp.spawn(run_func, nprocs=world_size) def _test_extramsa_stack(rank, world_size, chunk_size, inplace, get_openfold_module_and_data): os.environ['RANK'] = str(rank) os.environ['LOCAL_RANK'] = str(rank) os.environ['WORLD_SIZE'] = str(world_size) # init distributed for Dynamic Axial Parallelism fastfold.distributed.init_dap() z_out, config, fast_module, data = get_openfold_module_and_data inputs = [copy.deepcopy(i).cuda() for i in data] fast_module = copy.deepcopy(fast_module).eval().cuda() with torch.no_grad(): set_chunk_size(chunk_size) if not inplace: z_fast = fast_module( inputs[0], inputs[1], msa_mask=inputs[2], pair_mask=inputs[3], chunk_size=chunk_size, _mask_trans=config.model._mask_trans) else: z_fast = fast_module.inplace( [inputs[0]], [inputs[1]], msa_mask=inputs[2], pair_mask=inputs[3], chunk_size=chunk_size, _mask_trans=config.model._mask_trans) z_fast = z_fast[0] error = torch.mean(torch.abs(z_out.cuda() - z_fast)) assert error < 1e-3, f"Test z failed at chunk size: {chunk_size}, inplace: {inplace}. The position dif is {error}"