# Copyright 2021 AlQuraishi Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def random_template_feats(n_templ, n, batch_size=None): b = [] if batch_size is not None: b.append(batch_size) batch = { "template_mask": np.random.randint(0, 2, (*b, n_templ)), "template_pseudo_beta_mask": np.random.randint(0, 2, (*b, n_templ, n)), "template_pseudo_beta": np.random.rand(*b, n_templ, n, 3), "template_aatype": np.random.randint(0, 22, (*b, n_templ, n)), "template_all_atom_mask": np.random.randint( 0, 2, (*b, n_templ, n, 37) ), "template_all_atom_positions": np.random.rand(*b, n_templ, n, 37, 3) * 10, "template_torsion_angles_sin_cos": np.random.rand(*b, n_templ, n, 7, 2), "template_alt_torsion_angles_sin_cos": np.random.rand(*b, n_templ, n, 7, 2), "template_torsion_angles_mask": np.random.rand(*b, n_templ, n, 7), } batch = {k: v.astype(np.float32) for k, v in batch.items()} batch["template_aatype"] = batch["template_aatype"].astype(np.int64) return batch def random_extra_msa_feats(n_extra, n, batch_size=None): b = [] if batch_size is not None: b.append(batch_size) batch = { "extra_msa": np.random.randint(0, 22, (*b, n_extra, n)).astype( np.int64 ), "extra_has_deletion": np.random.randint(0, 2, (*b, n_extra, n)).astype( np.float32 ), "extra_deletion_value": np.random.rand(*b, n_extra, n).astype( np.float32 ), "extra_msa_mask": np.random.randint(0, 2, (*b, n_extra, n)).astype( np.float32 ), } return batch