# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import random import sys import time from datetime import date import numpy as np import torch import openfold.np.relax.relax as relax from fastfold.utils import inject_openfold from openfold.config import model_config from openfold.data import data_pipeline, feature_pipeline, templates from openfold.model.model import AlphaFold from openfold.model.torchscript import script_preset_ from openfold.np import protein, residue_constants from openfold.utils.import_weights import import_jax_weights_ from openfold.utils.tensor_utils import tensor_tree_map from scripts.utils import add_data_args def main(args): config = model_config(args.model_name) model = AlphaFold(config) import_jax_weights_(model, args.param_path, version=args.model_name) model = inject_openfold(model) model = model.eval() #script_preset_(model) model = model.to(args.model_device) template_featurizer = templates.TemplateHitFeaturizer( mmcif_dir=args.template_mmcif_dir, max_template_date=args.max_template_date, max_hits=config.data.predict.max_templates, kalign_binary_path=args.kalign_binary_path, release_dates_path=args.release_dates_path, obsolete_pdbs_path=args.obsolete_pdbs_path) use_small_bfd = (args.bfd_database_path is None) data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,) output_dir_base = args.output_dir random_seed = args.data_random_seed if random_seed is None: random_seed = random.randrange(sys.maxsize) feature_processor = feature_pipeline.FeaturePipeline(config.data) if not os.path.exists(output_dir_base): os.makedirs(output_dir_base) if (args.use_precomputed_alignments is None): alignment_dir = os.path.join(output_dir_base, "alignments") else: alignment_dir = args.use_precomputed_alignments # Gather input sequences with open(args.fasta_path, "r") as fp: lines = [l.strip() for l in fp.readlines()] tags, seqs = lines[::2], lines[1::2] tags = [l[1:] for l in tags] for tag, seq in zip(tags, seqs): fasta_path = os.path.join(args.output_dir, "tmp.fasta") with open(fasta_path, "w") as fp: fp.write(f">{tag}\n{seq}") print("Generating features...") local_alignment_dir = os.path.join(alignment_dir, tag) if (args.use_precomputed_alignments is None): if not os.path.exists(local_alignment_dir): os.makedirs(local_alignment_dir) alignment_runner = data_pipeline.AlignmentRunner( jackhmmer_binary_path=args.jackhmmer_binary_path, hhblits_binary_path=args.hhblits_binary_path, hhsearch_binary_path=args.hhsearch_binary_path, uniref90_database_path=args.uniref90_database_path, mgnify_database_path=args.mgnify_database_path, bfd_database_path=args.bfd_database_path, uniclust30_database_path=args.uniclust30_database_path, pdb70_database_path=args.pdb70_database_path, use_small_bfd=use_small_bfd, no_cpus=args.cpus, ) alignment_runner.run(fasta_path, local_alignment_dir) feature_dict = data_processor.process_fasta(fasta_path=fasta_path, alignment_dir=local_alignment_dir) # Remove temporary FASTA file os.remove(fasta_path) processed_feature_dict = feature_processor.process_features( feature_dict, mode='predict', ) print("Executing model...") batch = processed_feature_dict with torch.no_grad(): batch = {k: torch.as_tensor(v, device=args.model_device) for k, v in batch.items()} t = time.perf_counter() out = model(batch) print(f"Inference time: {time.perf_counter() - t}") # Toss out the recycling dimensions --- we don't need them anymore batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch) out = tensor_tree_map(lambda x: np.array(x.cpu()), out) plddt = out["plddt"] mean_plddt = np.mean(plddt) plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1) unrelaxed_protein = protein.from_prediction(features=batch, result=out, b_factors=plddt_b_factors) # Save the unrelaxed PDB. unrelaxed_output_path = os.path.join(args.output_dir, f'{tag}_{args.model_name}_unrelaxed.pdb') with open(unrelaxed_output_path, 'w') as f: f.write(protein.to_pdb(unrelaxed_protein)) amber_relaxer = relax.AmberRelaxation( use_gpu=(args.model_device != "cpu"), **config.relax, ) # Relax the prediction. t = time.perf_counter() visible_devices = os.getenv("CUDA_VISIBLE_DEVICES") if ("cuda" in args.model_device): device_no = args.model_device.split(":")[-1] os.environ["CUDA_VISIBLE_DEVICES"] = device_no relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein) if visible_devices: os.environ["CUDA_VISIBLE_DEVICES"] = visible_devices print(f"Relaxation time: {time.perf_counter() - t}") # Save the relaxed PDB. relaxed_output_path = os.path.join(args.output_dir, f'{tag}_{args.model_name}_relaxed.pdb') with open(relaxed_output_path, 'w') as f: f.write(relaxed_pdb_str) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "fasta_path", type=str, ) parser.add_argument( "template_mmcif_dir", type=str, ) parser.add_argument("--use_precomputed_alignments", type=str, default=None, help="""Path to alignment directory. If provided, alignment computation is skipped and database path arguments are ignored.""") parser.add_argument( "--output_dir", type=str, default=os.getcwd(), help="""Name of the directory in which to output the prediction""", ) parser.add_argument("--model_device", type=str, default="cpu", help="""Name of the device on which to run the model. Any valid torch device name is accepted (e.g. "cpu", "cuda:0")""") parser.add_argument("--model_name", type=str, default="model_1", help="""Name of a model config. Choose one of model_{1-5} or model_{1-5}_ptm, as defined on the AlphaFold GitHub.""") parser.add_argument("--param_path", type=str, default=None, help="""Path to model parameters. If None, parameters are selected automatically according to the model name from openfold/resources/params""") parser.add_argument("--cpus", type=int, default=12, help="""Number of CPUs with which to run alignment tools""") parser.add_argument('--preset', type=str, default='reduced_dbs', choices=('reduced_dbs', 'full_dbs')) parser.add_argument('--data_random_seed', type=str, default=None) add_data_args(parser) args = parser.parse_args() if (args.param_path is None): args.param_path = os.path.join("openfold", "resources", "params", "params_" + args.model_name + ".npz") if (args.model_device == "cpu" and torch.cuda.is_available()): logging.warning("""The model is being run on CPU. Consider specifying --model_device for better performance""") main(args)