Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastFold
Commits
4693058b
Unverified
Commit
4693058b
authored
Sep 13, 2022
by
Fazzie-Maqianli
Committed by
GitHub
Sep 13, 2022
Browse files
support multimer (#63)
parent
c80a4df5
Changes
13
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
130 additions
and
2805 deletions
+130
-2805
fastfold/data/data_pipeline.py
fastfold/data/data_pipeline.py
+64
-47
fastfold/data/feature_pipeline.py
fastfold/data/feature_pipeline.py
+2
-1
fastfold/data/parsers.py
fastfold/data/parsers.py
+14
-8
fastfold/np/__init__.py
fastfold/np/__init__.py
+0
-16
fastfold/np/protein.py
fastfold/np/protein.py
+0
-368
fastfold/np/relax/__init__.py
fastfold/np/relax/__init__.py
+0
-16
fastfold/np/relax/amber_minimize.py
fastfold/np/relax/amber_minimize.py
+0
-555
fastfold/np/relax/cleanup.py
fastfold/np/relax/cleanup.py
+0
-131
fastfold/np/relax/relax.py
fastfold/np/relax/relax.py
+0
-90
fastfold/np/relax/utils.py
fastfold/np/relax/utils.py
+0
-86
fastfold/np/residue_constants.py
fastfold/np/residue_constants.py
+0
-1485
fastfold/utils/all_atom_multimer.py
fastfold/utils/all_atom_multimer.py
+6
-1
inference.py
inference.py
+44
-1
No files found.
fastfold/data/data_pipeline.py
View file @
4693058b
...
@@ -34,6 +34,7 @@ from fastfold.data import (
...
@@ -34,6 +34,7 @@ from fastfold.data import (
msa_pairing
,
msa_pairing
,
feature_processing_multimer
,
feature_processing_multimer
,
)
)
from
fastfold.data
import
templates
from
fastfold.data.parsers
import
Msa
from
fastfold.data.parsers
import
Msa
from
fastfold.data.tools
import
jackhmmer
,
hhblits
,
hhsearch
,
hmmsearch
from
fastfold.data.tools
import
jackhmmer
,
hhblits
,
hhsearch
,
hmmsearch
from
fastfold.data.tools.utils
import
to_date
from
fastfold.data.tools.utils
import
to_date
...
@@ -57,7 +58,7 @@ def empty_template_feats(n_res) -> FeatureDict:
...
@@ -57,7 +58,7 @@ def empty_template_feats(n_res) -> FeatureDict:
def
make_template_features
(
def
make_template_features
(
input_sequence
:
str
,
input_sequence
:
str
,
hits
:
Sequence
[
Any
],
hits
:
Sequence
[
Any
],
template_featurizer
:
Union
[
hhsearch
.
HHSearch
,
hmmsearch
.
Hmmsearch
],
template_featurizer
:
Union
[
templates
.
TemplateHitFeaturizer
,
templates
.
HmmsearchHitFeaturizer
],
query_pdb_code
:
Optional
[
str
]
=
None
,
query_pdb_code
:
Optional
[
str
]
=
None
,
query_release_date
:
Optional
[
str
]
=
None
,
query_release_date
:
Optional
[
str
]
=
None
,
)
->
FeatureDict
:
)
->
FeatureDict
:
...
@@ -65,7 +66,7 @@ def make_template_features(
...
@@ -65,7 +66,7 @@ def make_template_features(
if
(
len
(
hits_cat
)
==
0
or
template_featurizer
is
None
):
if
(
len
(
hits_cat
)
==
0
or
template_featurizer
is
None
):
template_features
=
empty_template_feats
(
len
(
input_sequence
))
template_features
=
empty_template_feats
(
len
(
input_sequence
))
else
:
else
:
if
type
(
template_featurizer
)
==
hhsearch
.
HHSearch
:
if
type
(
template_featurizer
)
==
templates
.
TemplateHitFeaturizer
:
templates_result
=
template_featurizer
.
get_templates
(
templates_result
=
template_featurizer
.
get_templates
(
query_sequence
=
input_sequence
,
query_sequence
=
input_sequence
,
query_pdb_code
=
query_pdb_code
,
query_pdb_code
=
query_pdb_code
,
...
@@ -202,32 +203,35 @@ def make_pdb_features(
...
@@ -202,32 +203,35 @@ def make_pdb_features(
return
pdb_feats
return
pdb_feats
def
make_msa_features
(
def
make_msa_features
(
msas
:
Sequence
[
parsers
.
Msa
])
->
FeatureDict
:
msas
:
Sequence
[
Sequence
[
str
]],
deletion_matrices
:
Sequence
[
parsers
.
DeletionMatrix
],
)
->
FeatureDict
:
"""Constructs a feature dict of MSA features."""
"""Constructs a feature dict of MSA features."""
if
not
msas
:
if
not
msas
:
raise
ValueError
(
"At least one MSA must be provided."
)
raise
ValueError
(
"At least one MSA must be provided."
)
int_msa
=
[]
int_msa
=
[]
deletion_matrix
=
[]
deletion_matrix
=
[]
species_ids
=
[]
seen_sequences
=
set
()
seen_sequences
=
set
()
for
msa_index
,
msa
in
enumerate
(
msas
):
for
msa_index
,
msa
in
enumerate
(
msas
):
if
not
msa
:
if
not
msa
:
raise
ValueError
(
raise
ValueError
(
f
"MSA
{
msa_index
}
must contain at least one sequence."
f
"MSA
{
msa_index
}
must contain at least one sequence."
)
)
for
sequence_index
,
sequence
in
enumerate
(
msa
):
for
sequence_index
,
sequence
in
enumerate
(
msa
.
sequences
):
if
sequence
in
seen_sequences
:
if
sequence
in
seen_sequences
:
continue
continue
seen_sequences
.
add
(
sequence
)
seen_sequences
.
add
(
sequence
)
int_msa
.
append
(
int_msa
.
append
(
[
residue_constants
.
HHBLITS_AA_TO_ID
[
res
]
for
res
in
sequence
]
[
residue_constants
.
HHBLITS_AA_TO_ID
[
res
]
for
res
in
sequence
]
)
)
deletion_matrix
.
append
(
deletion_matrices
[
msa_index
][
sequence_index
])
num_res
=
len
(
msas
[
0
][
0
])
deletion_matrix
.
append
(
msa
.
deletion_matrix
[
sequence_index
])
identifiers
=
msa_identifiers
.
get_identifiers
(
msa
.
descriptions
[
sequence_index
]
)
species_ids
.
append
(
identifiers
.
species_id
.
encode
(
'utf-8'
))
num_res
=
len
(
msas
[
0
].
sequences
[
0
])
num_alignments
=
len
(
int_msa
)
num_alignments
=
len
(
int_msa
)
features
=
{}
features
=
{}
features
[
"deletion_matrix_int"
]
=
np
.
array
(
deletion_matrix
,
dtype
=
np
.
int32
)
features
[
"deletion_matrix_int"
]
=
np
.
array
(
deletion_matrix
,
dtype
=
np
.
int32
)
...
@@ -235,9 +239,9 @@ def make_msa_features(
...
@@ -235,9 +239,9 @@ def make_msa_features(
features
[
"num_alignments"
]
=
np
.
array
(
features
[
"num_alignments"
]
=
np
.
array
(
[
num_alignments
]
*
num_res
,
dtype
=
np
.
int32
[
num_alignments
]
*
num_res
,
dtype
=
np
.
int32
)
)
features
[
"msa_species_identifiers"
]
=
np
.
array
(
species_ids
,
dtype
=
np
.
object_
)
return
features
return
features
def
run_msa_tool
(
def
run_msa_tool
(
msa_runner
,
msa_runner
,
fasta_path
:
str
,
fasta_path
:
str
,
...
@@ -455,7 +459,7 @@ class AlignmentRunner:
...
@@ -455,7 +459,7 @@ class AlignmentRunner:
class
AlignmentRunnerMultimer
(
AlignmentRunner
)
:
class
AlignmentRunnerMultimer
:
"""Runs alignment tools and saves the results"""
"""Runs alignment tools and saves the results"""
def
__init__
(
def
__init__
(
...
@@ -504,7 +508,6 @@ class AlignmentRunnerMultimer(AlignmentRunner):
...
@@ -504,7 +508,6 @@ class AlignmentRunnerMultimer(AlignmentRunner):
mgnify_max_hits:
mgnify_max_hits:
Max number of mgnify hits
Max number of mgnify hits
"""
"""
# super().__init__()
db_map
=
{
db_map
=
{
"jackhmmer"
:
{
"jackhmmer"
:
{
"binary"
:
jackhmmer_binary_path
,
"binary"
:
jackhmmer_binary_path
,
...
@@ -810,43 +813,41 @@ class DataPipeline:
...
@@ -810,43 +813,41 @@ class DataPipeline:
return
msa
return
msa
for
(
name
,
start
,
size
)
in
_alignment_index
[
"files"
]:
for
(
name
,
start
,
size
)
in
_alignment_index
[
"files"
]:
ext
=
os
.
path
.
splitext
(
name
)
[
-
1
]
filename
,
ext
=
os
.
path
.
splitext
(
name
)
if
(
ext
==
".a3m"
):
if
(
ext
==
".a3m"
):
msa
,
deletion_matrix
=
parsers
.
parse_a3m
(
msa
=
parsers
.
parse_a3m
(
read_msa
(
start
,
size
)
read_msa
(
start
,
size
)
)
)
data
=
{
"msa"
:
msa
,
"deletion_matrix"
:
deletion_matrix
}
# The "hmm_output" exception is a crude way to exclude
elif
(
ext
==
".sto"
):
# multimer template hits.
msa
,
deletion_matrix
,
_
=
parsers
.
parse_stockholm
(
elif
(
ext
==
".sto"
and
not
"hmm_output"
==
filename
):
msa
=
parsers
.
parse_stockholm
(
read_msa
(
start
,
size
)
read_msa
(
start
,
size
)
)
)
data
=
{
"msa"
:
msa
,
"deletion_matrix"
:
deletion_matrix
}
else
:
else
:
continue
continue
msa_data
[
name
]
=
dat
a
msa_data
[
name
]
=
ms
a
fp
.
close
()
fp
.
close
()
else
:
else
:
for
f
in
os
.
listdir
(
alignment_dir
):
for
f
in
os
.
listdir
(
alignment_dir
):
path
=
os
.
path
.
join
(
alignment_dir
,
f
)
path
=
os
.
path
.
join
(
alignment_dir
,
f
)
ext
=
os
.
path
.
splitext
(
f
)
[
-
1
]
filename
,
ext
=
os
.
path
.
splitext
(
f
)
if
(
ext
==
".a3m"
):
if
(
ext
==
".a3m"
):
with
open
(
path
,
"r"
)
as
fp
:
with
open
(
path
,
"r"
)
as
fp
:
msa
,
deletion_matrix
=
parsers
.
parse_a3m
(
fp
.
read
())
msa
=
parsers
.
parse_a3m
(
fp
.
read
())
data
=
{
"msa"
:
msa
,
"deletion_matrix"
:
deletion_matrix
}
elif
(
ext
==
".sto"
and
not
"hmm_output"
==
filename
):
elif
(
ext
==
".sto"
):
with
open
(
path
,
"r"
)
as
fp
:
with
open
(
path
,
"r"
)
as
fp
:
msa
,
deletion_matrix
,
_
=
parsers
.
parse_stockholm
(
msa
=
parsers
.
parse_stockholm
(
fp
.
read
()
fp
.
read
()
)
)
data
=
{
"msa"
:
msa
,
"deletion_matrix"
:
deletion_matrix
}
else
:
else
:
continue
continue
msa_data
[
f
]
=
dat
a
msa_data
[
f
]
=
ms
a
return
msa_data
return
msa_data
...
@@ -913,19 +914,13 @@ class DataPipeline:
...
@@ -913,19 +914,13 @@ class DataPipeline:
must be provided.
must be provided.
"""
"""
)
)
msa_data
[
"dummy"
]
=
{
msa_data
[
"dummy"
]
=
Msa
(
"msa"
:
[
input_sequence
],
[
input_sequence
],
"deletion_matrix"
:
[[
0
for
_
in
input_sequence
]],
[[
0
for
_
in
input_sequence
]],
}
[
"dummy"
]
)
msas
,
deletion_matrices
=
zip
(
*
[
(
v
[
"msa"
],
v
[
"deletion_matrix"
])
for
v
in
msa_data
.
values
()
msa_features
=
make_msa_features
(
list
(
msa_data
.
values
()))
])
msa_features
=
make_msa_features
(
msas
=
msas
,
deletion_matrices
=
deletion_matrices
,
)
return
msa_features
return
msa_features
...
@@ -996,7 +991,10 @@ class DataPipeline:
...
@@ -996,7 +991,10 @@ class DataPipeline:
mmcif_feats
=
make_mmcif_features
(
mmcif
,
chain_id
)
mmcif_feats
=
make_mmcif_features
(
mmcif
,
chain_id
)
input_sequence
=
mmcif
.
chain_to_seqres
[
chain_id
]
input_sequence
=
mmcif
.
chain_to_seqres
[
chain_id
]
hits
=
self
.
_parse_template_hits
(
alignment_dir
,
_alignment_index
)
hits
=
self
.
_parse_template_hits
(
alignment_dir
,
input_sequence
,
_alignment_index
)
template_features
=
make_template_features
(
template_features
=
make_template_features
(
input_sequence
,
input_sequence
,
hits
,
hits
,
...
@@ -1014,13 +1012,24 @@ class DataPipeline:
...
@@ -1014,13 +1012,24 @@ class DataPipeline:
alignment_dir
:
str
,
alignment_dir
:
str
,
is_distillation
:
bool
=
True
,
is_distillation
:
bool
=
True
,
chain_id
:
Optional
[
str
]
=
None
,
chain_id
:
Optional
[
str
]
=
None
,
_structure_index
:
Optional
[
str
]
=
None
,
_alignment_index
:
Optional
[
str
]
=
None
,
_alignment_index
:
Optional
[
str
]
=
None
,
)
->
FeatureDict
:
)
->
FeatureDict
:
"""
"""
Assembles features for a protein in a PDB file.
Assembles features for a protein in a PDB file.
"""
"""
with
open
(
pdb_path
,
'r'
)
as
f
:
if
(
_structure_index
is
not
None
):
pdb_str
=
f
.
read
()
db_dir
=
os
.
path
.
dirname
(
pdb_path
)
db
=
_structure_index
[
"db"
]
db_path
=
os
.
path
.
join
(
db_dir
,
db
)
fp
=
open
(
db_path
,
"rb"
)
_
,
offset
,
length
=
_structure_index
[
"files"
][
0
]
fp
.
seek
(
offset
)
pdb_str
=
fp
.
read
(
length
).
decode
(
"utf-8"
)
fp
.
close
()
else
:
with
open
(
pdb_path
,
'r'
)
as
f
:
pdb_str
=
f
.
read
()
protein_object
=
protein
.
from_pdb_string
(
pdb_str
,
chain_id
)
protein_object
=
protein
.
from_pdb_string
(
pdb_str
,
chain_id
)
input_sequence
=
_aatype_to_str_sequence
(
protein_object
.
aatype
)
input_sequence
=
_aatype_to_str_sequence
(
protein_object
.
aatype
)
...
@@ -1028,10 +1037,14 @@ class DataPipeline:
...
@@ -1028,10 +1037,14 @@ class DataPipeline:
pdb_feats
=
make_pdb_features
(
pdb_feats
=
make_pdb_features
(
protein_object
,
protein_object
,
description
,
description
,
is_distillation
is_distillation
=
is_distillation
)
)
hits
=
self
.
_parse_template_hits
(
alignment_dir
,
_alignment_index
)
hits
=
self
.
_parse_template_hits
(
alignment_dir
,
input_sequence
,
_alignment_index
)
template_features
=
make_template_features
(
template_features
=
make_template_features
(
input_sequence
,
input_sequence
,
hits
,
hits
,
...
@@ -1059,7 +1072,11 @@ class DataPipeline:
...
@@ -1059,7 +1072,11 @@ class DataPipeline:
description
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
core_path
))[
0
].
upper
()
description
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
core_path
))[
0
].
upper
()
core_feats
=
make_protein_features
(
protein_object
,
description
)
core_feats
=
make_protein_features
(
protein_object
,
description
)
hits
=
self
.
_parse_template_hits
(
alignment_dir
,
_alignment_index
)
hits
=
self
.
_parse_template_hits
(
alignment_dir
,
input_sequence
,
_alignment_index
)
template_features
=
make_template_features
(
template_features
=
make_template_features
(
input_sequence
,
input_sequence
,
hits
,
hits
,
...
@@ -1123,8 +1140,8 @@ class DataPipelineMultimer:
...
@@ -1123,8 +1140,8 @@ class DataPipelineMultimer:
uniprot_msa_path
=
os
.
path
.
join
(
alignment_dir
,
"uniprot_hits.sto"
)
uniprot_msa_path
=
os
.
path
.
join
(
alignment_dir
,
"uniprot_hits.sto"
)
with
open
(
uniprot_msa_path
,
"r"
)
as
fp
:
with
open
(
uniprot_msa_path
,
"r"
)
as
fp
:
uniprot_msa_string
=
fp
.
read
()
uniprot_msa_string
=
fp
.
read
()
msa
,
deletion_matrix
,
_
=
parsers
.
parse_stockholm
(
uniprot_msa_string
)
msa
=
parsers
.
parse_stockholm
(
uniprot_msa_string
)
all_seq_features
=
make_msa_features
(
msa
,
deletion_matrix
)
all_seq_features
=
make_msa_features
(
[
msa
]
)
valid_feats
=
msa_pairing
.
MSA_FEATURES
+
(
valid_feats
=
msa_pairing
.
MSA_FEATURES
+
(
'msa_species_identifiers'
,
'msa_species_identifiers'
,
)
)
...
...
fastfold/data/feature_pipeline.py
View file @
4693058b
...
@@ -76,8 +76,9 @@ def np_example_to_features(
...
@@ -76,8 +76,9 @@ def np_example_to_features(
mode
:
str
,
mode
:
str
,
):
):
np_example
=
dict
(
np_example
)
np_example
=
dict
(
np_example
)
print
(
"np_example seq_length"
,
np_example
[
"seq_length"
])
if
is_multimer
:
if
is_multimer
:
num_res
=
int
(
np_example
[
"seq_length"
])
num_res
=
int
(
np_example
[
"seq_length"
]
[
0
]
)
else
:
else
:
num_res
=
int
(
np_example
[
"seq_length"
][
0
])
num_res
=
int
(
np_example
[
"seq_length"
][
0
])
cfg
,
feature_names
=
make_data_config
(
config
,
mode
=
mode
,
num_res
=
num_res
)
cfg
,
feature_names
=
make_data_config
(
config
,
mode
=
mode
,
num_res
=
num_res
)
...
...
fastfold/data/parsers.py
View file @
4693058b
...
@@ -96,9 +96,7 @@ def parse_fasta(fasta_string: str) -> Tuple[Sequence[str], Sequence[str]]:
...
@@ -96,9 +96,7 @@ def parse_fasta(fasta_string: str) -> Tuple[Sequence[str], Sequence[str]]:
return
sequences
,
descriptions
return
sequences
,
descriptions
def
parse_stockholm
(
def
parse_stockholm
(
stockholm_string
:
str
)
->
Msa
:
stockholm_string
:
str
,
)
->
Tuple
[
Sequence
[
str
],
DeletionMatrix
,
Sequence
[
str
]]:
"""Parses sequences and deletion matrix from stockholm format alignment.
"""Parses sequences and deletion matrix from stockholm format alignment.
Args:
Args:
...
@@ -153,10 +151,14 @@ def parse_stockholm(
...
@@ -153,10 +151,14 @@ def parse_stockholm(
deletion_count
=
0
deletion_count
=
0
deletion_matrix
.
append
(
deletion_vec
)
deletion_matrix
.
append
(
deletion_vec
)
return
msa
,
deletion_matrix
,
list
(
name_to_sequence
.
keys
())
return
Msa
(
sequences
=
msa
,
deletion_matrix
=
deletion_matrix
,
descriptions
=
list
(
name_to_sequence
.
keys
())
)
def
parse_a3m
(
a3m_string
:
str
)
->
Tuple
[
Sequence
[
str
],
DeletionMatrix
]
:
def
parse_a3m
(
a3m_string
:
str
)
->
Msa
:
"""Parses sequences and deletion matrix from a3m format alignment.
"""Parses sequences and deletion matrix from a3m format alignment.
Args:
Args:
...
@@ -171,7 +173,7 @@ def parse_a3m(a3m_string: str) -> Tuple[Sequence[str], DeletionMatrix]:
...
@@ -171,7 +173,7 @@ def parse_a3m(a3m_string: str) -> Tuple[Sequence[str], DeletionMatrix]:
at `deletion_matrix[i][j]` is the number of residues deleted from
at `deletion_matrix[i][j]` is the number of residues deleted from
the aligned sequence i at residue position j.
the aligned sequence i at residue position j.
"""
"""
sequences
,
_
=
parse_fasta
(
a3m_string
)
sequences
,
descriptions
=
parse_fasta
(
a3m_string
)
deletion_matrix
=
[]
deletion_matrix
=
[]
for
msa_sequence
in
sequences
:
for
msa_sequence
in
sequences
:
deletion_vec
=
[]
deletion_vec
=
[]
...
@@ -187,8 +189,12 @@ def parse_a3m(a3m_string: str) -> Tuple[Sequence[str], DeletionMatrix]:
...
@@ -187,8 +189,12 @@ def parse_a3m(a3m_string: str) -> Tuple[Sequence[str], DeletionMatrix]:
# Make the MSA matrix out of aligned (deletion-free) sequences.
# Make the MSA matrix out of aligned (deletion-free) sequences.
deletion_table
=
str
.
maketrans
(
""
,
""
,
string
.
ascii_lowercase
)
deletion_table
=
str
.
maketrans
(
""
,
""
,
string
.
ascii_lowercase
)
aligned_sequences
=
[
s
.
translate
(
deletion_table
)
for
s
in
sequences
]
aligned_sequences
=
[
s
.
translate
(
deletion_table
)
for
s
in
sequences
]
return
aligned_sequences
,
deletion_matrix
return
Msa
(
sequences
=
aligned_sequences
,
deletion_matrix
=
deletion_matrix
,
descriptions
=
descriptions
)
def
_convert_sto_seq_to_a3m
(
def
_convert_sto_seq_to_a3m
(
query_non_gaps
:
Sequence
[
bool
],
sto_seq
:
str
query_non_gaps
:
Sequence
[
bool
],
sto_seq
:
str
...
...
fastfold/np/__init__.py
deleted
100644 → 0
View file @
c80a4df5
import
os
import
glob
import
importlib
as
importlib
_files
=
glob
.
glob
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
"*.py"
))
__all__
=
[
os
.
path
.
basename
(
f
)[:
-
3
]
for
f
in
_files
if
os
.
path
.
isfile
(
f
)
and
not
f
.
endswith
(
"__init__.py"
)
]
_modules
=
[(
m
,
importlib
.
import_module
(
"."
+
m
,
__name__
))
for
m
in
__all__
]
for
_m
in
_modules
:
globals
()[
_m
[
0
]]
=
_m
[
1
]
# Avoid needlessly cluttering the global namespace
del
_files
,
_m
,
_modules
fastfold/np/protein.py
deleted
100644 → 0
View file @
c80a4df5
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Protein data type."""
import
dataclasses
import
io
from
typing
import
Any
,
Mapping
,
Optional
import
re
from
fastfold.np
import
residue_constants
from
Bio.PDB
import
PDBParser
import
numpy
as
np
FeatureDict
=
Mapping
[
str
,
np
.
ndarray
]
ModelOutput
=
Mapping
[
str
,
Any
]
# Is a nested dict.
PICO_TO_ANGSTROM
=
0.01
PDB_CHAIN_IDS
=
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
PDB_MAX_CHAINS
=
len
(
PDB_CHAIN_IDS
)
assert
(
PDB_MAX_CHAINS
==
62
)
@
dataclasses
.
dataclass
(
frozen
=
True
)
class
Protein
:
"""Protein structure representation."""
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
atom_positions
:
np
.
ndarray
# [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
aatype
:
np
.
ndarray
# [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
atom_mask
:
np
.
ndarray
# [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
residue_index
:
np
.
ndarray
# [num_res]
# 0-indexed number corresponding to the chain in the protein that this
# residue belongs to
chain_index
:
np
.
ndarray
# [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
b_factors
:
np
.
ndarray
# [num_res, num_atom_type]
def
__post_init__
(
self
):
if
(
len
(
np
.
unique
(
self
.
chain_index
))
>
PDB_MAX_CHAINS
):
raise
ValueError
(
f
"Cannot build an instance with more than
{
PDB_MAX_CHAINS
}
"
"chains because these cannot be written to PDB format"
)
def
from_pdb_string
(
pdb_str
:
str
,
chain_id
:
Optional
[
str
]
=
None
)
->
Protein
:
"""Takes a PDB string and constructs a Protein object.
WARNING: All non-standard residue types will be converted into UNK. All
non-standard atoms will be ignored.
Args:
pdb_str: The contents of the pdb file
chain_id: If chain_id is specified (e.g. A), then only that chain is
parsed. Else, all chains are parsed.
Returns:
A new `Protein` parsed from the pdb contents.
"""
pdb_fh
=
io
.
StringIO
(
pdb_str
)
parser
=
PDBParser
(
QUIET
=
True
)
structure
=
parser
.
get_structure
(
"none"
,
pdb_fh
)
models
=
list
(
structure
.
get_models
())
if
len
(
models
)
!=
1
:
raise
ValueError
(
f
"Only single model PDBs are supported. Found
{
len
(
models
)
}
models."
)
model
=
models
[
0
]
atom_positions
=
[]
aatype
=
[]
atom_mask
=
[]
residue_index
=
[]
chain_ids
=
[]
b_factors
=
[]
for
chain
in
model
:
if
(
chain_id
is
not
None
and
chain
.
id
!=
chain_id
):
continue
for
res
in
chain
:
if
res
.
id
[
2
]
!=
" "
:
raise
ValueError
(
f
"PDB contains an insertion code at chain
{
chain
.
id
}
and residue "
f
"index
{
res
.
id
[
1
]
}
. These are not supported."
)
res_shortname
=
residue_constants
.
restype_3to1
.
get
(
res
.
resname
,
"X"
)
restype_idx
=
residue_constants
.
restype_order
.
get
(
res_shortname
,
residue_constants
.
restype_num
)
pos
=
np
.
zeros
((
residue_constants
.
atom_type_num
,
3
))
mask
=
np
.
zeros
((
residue_constants
.
atom_type_num
,))
res_b_factors
=
np
.
zeros
((
residue_constants
.
atom_type_num
,))
for
atom
in
res
:
if
atom
.
name
not
in
residue_constants
.
atom_types
:
continue
pos
[
residue_constants
.
atom_order
[
atom
.
name
]]
=
atom
.
coord
mask
[
residue_constants
.
atom_order
[
atom
.
name
]]
=
1.0
res_b_factors
[
residue_constants
.
atom_order
[
atom
.
name
]
]
=
atom
.
bfactor
if
np
.
sum
(
mask
)
<
0.5
:
# If no known atom positions are reported for the residue then skip it.
continue
aatype
.
append
(
restype_idx
)
atom_positions
.
append
(
pos
)
atom_mask
.
append
(
mask
)
residue_index
.
append
(
res
.
id
[
1
])
chain_ids
.
append
(
chain
.
id
)
b_factors
.
append
(
res_b_factors
)
# Chain IDs are usually characters so map these to ints
unique_chain_ids
=
np
.
unique
(
chain_ids
)
chain_id_mapping
=
{
cid
:
n
for
n
,
cid
in
enumerate
(
unique_chain_ids
)}
chain_index
=
np
.
array
([
chain_id_mapping
[
cid
]
for
cid
in
chain_ids
])
return
Protein
(
atom_positions
=
np
.
array
(
atom_positions
),
atom_mask
=
np
.
array
(
atom_mask
),
aatype
=
np
.
array
(
aatype
),
residue_index
=
np
.
array
(
residue_index
),
chain_index
=
chain_index
,
b_factors
=
np
.
array
(
b_factors
),
)
def
from_proteinnet_string
(
proteinnet_str
:
str
)
->
Protein
:
tag_re
=
r
'(\[[A-Z]+\]\n)'
tags
=
[
tag
.
strip
()
for
tag
in
re
.
split
(
tag_re
,
proteinnet_str
)
if
len
(
tag
)
>
0
]
groups
=
zip
(
tags
[
0
::
2
],
[
l
.
split
(
'
\n
'
)
for
l
in
tags
[
1
::
2
]])
atoms
=
[
'N'
,
'CA'
,
'C'
]
aatype
=
None
atom_positions
=
None
atom_mask
=
None
for
g
in
groups
:
if
(
"[PRIMARY]"
==
g
[
0
]):
seq
=
g
[
1
][
0
].
strip
()
for
i
in
range
(
len
(
seq
)):
if
(
seq
[
i
]
not
in
residue_constants
.
restypes
):
seq
[
i
]
=
'X'
aatype
=
np
.
array
([
residue_constants
.
restype_order
.
get
(
res_symbol
,
residue_constants
.
restype_num
)
for
res_symbol
in
seq
])
elif
(
"[TERTIARY]"
==
g
[
0
]):
tertiary
=
[]
for
axis
in
range
(
3
):
tertiary
.
append
(
list
(
map
(
float
,
g
[
1
][
axis
].
split
())))
tertiary_np
=
np
.
array
(
tertiary
)
atom_positions
=
np
.
zeros
(
(
len
(
tertiary
[
0
])
//
3
,
residue_constants
.
atom_type_num
,
3
)
).
astype
(
np
.
float32
)
for
i
,
atom
in
enumerate
(
atoms
):
atom_positions
[:,
residue_constants
.
atom_order
[
atom
],
:]
=
(
np
.
transpose
(
tertiary_np
[:,
i
::
3
])
)
atom_positions
*=
PICO_TO_ANGSTROM
elif
(
"[MASK]"
==
g
[
0
]):
mask
=
np
.
array
(
list
(
map
({
'-'
:
0
,
'+'
:
1
}.
get
,
g
[
1
][
0
].
strip
())))
atom_mask
=
np
.
zeros
(
(
len
(
mask
),
residue_constants
.
atom_type_num
,)
).
astype
(
np
.
float32
)
for
i
,
atom
in
enumerate
(
atoms
):
atom_mask
[:,
residue_constants
.
atom_order
[
atom
]]
=
1
atom_mask
*=
mask
[...,
None
]
return
Protein
(
atom_positions
=
atom_positions
,
atom_mask
=
atom_mask
,
aatype
=
aatype
,
residue_index
=
np
.
arange
(
len
(
aatype
)),
b_factors
=
None
,
)
def
_chain_end
(
atom_index
,
end_resname
,
chain_name
,
residue_index
)
->
str
:
chain_end
=
'TER'
return
(
f
'
{
chain_end
:
<
6
}{
atom_index
:
>
5
}
{
end_resname
:
>
3
}
'
f
'
{
chain_name
:
>
1
}{
residue_index
:
>
4
}
'
)
def
to_pdb
(
prot
:
Protein
)
->
str
:
"""Converts a `Protein` instance to a PDB string.
Args:
prot: The protein to convert to PDB.
Returns:
PDB string.
"""
restypes
=
residue_constants
.
restypes
+
[
"X"
]
res_1to3
=
lambda
r
:
residue_constants
.
restype_1to3
.
get
(
restypes
[
r
],
"UNK"
)
atom_types
=
residue_constants
.
atom_types
pdb_lines
=
[]
atom_mask
=
prot
.
atom_mask
aatype
=
prot
.
aatype
atom_positions
=
prot
.
atom_positions
residue_index
=
prot
.
residue_index
.
astype
(
np
.
int32
)
chain_index
=
prot
.
chain_index
.
astype
(
np
.
int32
)
b_factors
=
prot
.
b_factors
if
np
.
any
(
aatype
>
residue_constants
.
restype_num
):
raise
ValueError
(
"Invalid aatypes."
)
# Construct a mapping from chain integer indices to chain ID strings.
chain_ids
=
{}
for
i
in
np
.
unique
(
chain_index
):
# np.unique gives sorted output.
if
i
>=
PDB_MAX_CHAINS
:
raise
ValueError
(
f
"The PDB format supports at most
{
PDB_MAX_CHAINS
}
chains."
)
chain_ids
[
i
]
=
PDB_CHAIN_IDS
[
i
]
pdb_lines
.
append
(
"MODEL 1"
)
atom_index
=
1
last_chain_index
=
chain_index
[
0
]
# Add all atom sites.
for
i
in
range
(
aatype
.
shape
[
0
]):
# Close the previous chain if in a multichain PDB.
if
last_chain_index
!=
chain_index
[
i
]:
pdb_lines
.
append
(
_chain_end
(
atom_index
,
res_1to3
(
aatype
[
i
-
1
]),
chain_ids
[
chain_index
[
i
-
1
]],
residue_index
[
i
-
1
]
)
)
last_chain_index
=
chain_index
[
i
]
atom_index
+=
1
# Atom index increases at the TER symbol.
res_name_3
=
res_1to3
(
aatype
[
i
])
for
atom_name
,
pos
,
mask
,
b_factor
in
zip
(
atom_types
,
atom_positions
[
i
],
atom_mask
[
i
],
b_factors
[
i
]
):
if
mask
<
0.5
:
continue
record_type
=
"ATOM"
name
=
atom_name
if
len
(
atom_name
)
==
4
else
f
"
{
atom_name
}
"
alt_loc
=
""
insertion_code
=
""
occupancy
=
1.00
element
=
atom_name
[
0
]
# Protein supports only C, N, O, S, this works.
charge
=
""
# PDB is a columnar format, every space matters here!
atom_line
=
(
f
"
{
record_type
:
<
6
}{
atom_index
:
>
5
}
{
name
:
<
4
}{
alt_loc
:
>
1
}
"
f
"
{
res_name_3
:
>
3
}
{
chain_ids
[
chain_index
[
i
]]:
>
1
}
"
f
"
{
residue_index
[
i
]:
>
4
}{
insertion_code
:
>
1
}
"
f
"
{
pos
[
0
]:
>
8.3
f
}{
pos
[
1
]:
>
8.3
f
}{
pos
[
2
]:
>
8.3
f
}
"
f
"
{
occupancy
:
>
6.2
f
}{
b_factor
:
>
6.2
f
}
"
f
"
{
element
:
>
2
}{
charge
:
>
2
}
"
)
pdb_lines
.
append
(
atom_line
)
atom_index
+=
1
# Close the final chain.
pdb_lines
.
append
(
_chain_end
(
atom_index
,
res_1to3
(
aatype
[
-
1
]),
chain_ids
[
chain_index
[
-
1
]],
residue_index
[
-
1
]
)
)
pdb_lines
.
append
(
"ENDMDL"
)
pdb_lines
.
append
(
"END"
)
# Pad all lines to 80 characters
pdb_lines
=
[
line
.
ljust
(
80
)
for
line
in
pdb_lines
]
return
'
\n
'
.
join
(
pdb_lines
)
+
'
\n
'
# Add terminating newline.
def
ideal_atom_mask
(
prot
:
Protein
)
->
np
.
ndarray
:
"""Computes an ideal atom mask.
`Protein.atom_mask` typically is defined according to the atoms that are
reported in the PDB. This function computes a mask according to heavy atoms
that should be present in the given sequence of amino acids.
Args:
prot: `Protein` whose fields are `numpy.ndarray` objects.
Returns:
An ideal atom mask.
"""
return
residue_constants
.
STANDARD_ATOM_MASK
[
prot
.
aatype
]
def
from_prediction
(
features
:
FeatureDict
,
result
:
ModelOutput
,
b_factors
:
Optional
[
np
.
ndarray
]
=
None
,
remove_leading_feature_dimension
:
bool
=
True
,
)
->
Protein
:
"""Assembles a protein from a prediction.
Args:
features: Dictionary holding model inputs.
result: Dictionary holding model outputs.
b_factors: (Optional) B-factors to use for the protein.
remove_leading_feature_dimension: Whether to remove the leading dimension
of the `features` values
Returns:
A protein instance.
"""
def
_maybe_remove_leading_dim
(
arr
:
np
.
ndarray
)
->
np
.
ndarray
:
return
arr
[
0
]
if
remove_leading_feature_dimension
else
arr
if
'asym_id'
in
features
:
chain_index
=
_maybe_remove_leading_dim
(
features
[
"asym_id"
])
else
:
chain_index
=
np
.
zeros_like
(
_maybe_remove_leading_dim
(
features
[
"aatype"
])
)
if
b_factors
is
None
:
b_factors
=
np
.
zeros_like
(
result
[
"final_atom_mask"
])
return
Protein
(
aatype
=
_maybe_remove_leading_dim
(
features
[
"aatype"
]),
atom_positions
=
result
[
"final_atom_positions"
],
atom_mask
=
result
[
"final_atom_mask"
],
residue_index
=
_maybe_remove_leading_dim
(
features
[
"residue_index"
])
+
1
,
chain_index
=
chain_index
,
b_factors
=
b_factors
,
)
fastfold/np/relax/__init__.py
deleted
100644 → 0
View file @
c80a4df5
import
os
import
glob
import
importlib
as
importlib
_files
=
glob
.
glob
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
"*.py"
))
__all__
=
[
os
.
path
.
basename
(
f
)[:
-
3
]
for
f
in
_files
if
os
.
path
.
isfile
(
f
)
and
not
f
.
endswith
(
"__init__.py"
)
]
_modules
=
[(
m
,
importlib
.
import_module
(
"."
+
m
,
__name__
))
for
m
in
__all__
]
for
_m
in
_modules
:
globals
()[
_m
[
0
]]
=
_m
[
1
]
# Avoid needlessly cluttering the global namespace
del
_files
,
_m
,
_modules
fastfold/np/relax/amber_minimize.py
deleted
100644 → 0
View file @
c80a4df5
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Restrained Amber Minimization of a structure."""
import
io
import
time
from
typing
import
Collection
,
Optional
,
Sequence
from
absl
import
logging
from
openfold.np
import
(
protein
,
residue_constants
,
)
import
openfold.utils.loss
as
loss
from
openfold.np.relax
import
cleanup
,
utils
import
ml_collections
import
numpy
as
np
from
simtk
import
openmm
from
simtk
import
unit
from
simtk.openmm
import
app
as
openmm_app
from
simtk.openmm.app.internal.pdbstructure
import
PdbStructure
ENERGY
=
unit
.
kilocalories_per_mole
LENGTH
=
unit
.
angstroms
def
will_restrain
(
atom
:
openmm_app
.
Atom
,
rset
:
str
)
->
bool
:
"""Returns True if the atom will be restrained by the given restraint set."""
if
rset
==
"non_hydrogen"
:
return
atom
.
element
.
name
!=
"hydrogen"
elif
rset
==
"c_alpha"
:
return
atom
.
name
==
"CA"
def
_add_restraints
(
system
:
openmm
.
System
,
reference_pdb
:
openmm_app
.
PDBFile
,
stiffness
:
unit
.
Unit
,
rset
:
str
,
exclude_residues
:
Sequence
[
int
],
):
"""Adds a harmonic potential that restrains the system to a structure."""
assert
rset
in
[
"non_hydrogen"
,
"c_alpha"
]
force
=
openmm
.
CustomExternalForce
(
"0.5 * k * ((x-x0)^2 + (y-y0)^2 + (z-z0)^2)"
)
force
.
addGlobalParameter
(
"k"
,
stiffness
)
for
p
in
[
"x0"
,
"y0"
,
"z0"
]:
force
.
addPerParticleParameter
(
p
)
for
i
,
atom
in
enumerate
(
reference_pdb
.
topology
.
atoms
()):
if
atom
.
residue
.
index
in
exclude_residues
:
continue
if
will_restrain
(
atom
,
rset
):
force
.
addParticle
(
i
,
reference_pdb
.
positions
[
i
])
logging
.
info
(
"Restraining %d / %d particles."
,
force
.
getNumParticles
(),
system
.
getNumParticles
(),
)
system
.
addForce
(
force
)
def
_openmm_minimize
(
pdb_str
:
str
,
max_iterations
:
int
,
tolerance
:
unit
.
Unit
,
stiffness
:
unit
.
Unit
,
restraint_set
:
str
,
exclude_residues
:
Sequence
[
int
],
use_gpu
:
bool
,
):
"""Minimize energy via openmm."""
pdb_file
=
io
.
StringIO
(
pdb_str
)
pdb
=
openmm_app
.
PDBFile
(
pdb_file
)
force_field
=
openmm_app
.
ForceField
(
"amber99sb.xml"
)
constraints
=
openmm_app
.
HBonds
system
=
force_field
.
createSystem
(
pdb
.
topology
,
constraints
=
constraints
)
if
stiffness
>
0
*
ENERGY
/
(
LENGTH
**
2
):
_add_restraints
(
system
,
pdb
,
stiffness
,
restraint_set
,
exclude_residues
)
integrator
=
openmm
.
LangevinIntegrator
(
0
,
0.01
,
0.0
)
platform
=
openmm
.
Platform
.
getPlatformByName
(
"CUDA"
if
use_gpu
else
"CPU"
)
simulation
=
openmm_app
.
Simulation
(
pdb
.
topology
,
system
,
integrator
,
platform
)
simulation
.
context
.
setPositions
(
pdb
.
positions
)
ret
=
{}
state
=
simulation
.
context
.
getState
(
getEnergy
=
True
,
getPositions
=
True
)
ret
[
"einit"
]
=
state
.
getPotentialEnergy
().
value_in_unit
(
ENERGY
)
ret
[
"posinit"
]
=
state
.
getPositions
(
asNumpy
=
True
).
value_in_unit
(
LENGTH
)
simulation
.
minimizeEnergy
(
maxIterations
=
max_iterations
,
tolerance
=
tolerance
)
state
=
simulation
.
context
.
getState
(
getEnergy
=
True
,
getPositions
=
True
)
ret
[
"efinal"
]
=
state
.
getPotentialEnergy
().
value_in_unit
(
ENERGY
)
ret
[
"pos"
]
=
state
.
getPositions
(
asNumpy
=
True
).
value_in_unit
(
LENGTH
)
ret
[
"min_pdb"
]
=
_get_pdb_string
(
simulation
.
topology
,
state
.
getPositions
())
return
ret
def
_get_pdb_string
(
topology
:
openmm_app
.
Topology
,
positions
:
unit
.
Quantity
):
"""Returns a pdb string provided OpenMM topology and positions."""
with
io
.
StringIO
()
as
f
:
openmm_app
.
PDBFile
.
writeFile
(
topology
,
positions
,
f
)
return
f
.
getvalue
()
def
_check_cleaned_atoms
(
pdb_cleaned_string
:
str
,
pdb_ref_string
:
str
):
"""Checks that no atom positions have been altered by cleaning."""
cleaned
=
openmm_app
.
PDBFile
(
io
.
StringIO
(
pdb_cleaned_string
))
reference
=
openmm_app
.
PDBFile
(
io
.
StringIO
(
pdb_ref_string
))
cl_xyz
=
np
.
array
(
cleaned
.
getPositions
().
value_in_unit
(
LENGTH
))
ref_xyz
=
np
.
array
(
reference
.
getPositions
().
value_in_unit
(
LENGTH
))
for
ref_res
,
cl_res
in
zip
(
reference
.
topology
.
residues
(),
cleaned
.
topology
.
residues
()
):
assert
ref_res
.
name
==
cl_res
.
name
for
rat
in
ref_res
.
atoms
():
for
cat
in
cl_res
.
atoms
():
if
cat
.
name
==
rat
.
name
:
if
not
np
.
array_equal
(
cl_xyz
[
cat
.
index
],
ref_xyz
[
rat
.
index
]
):
raise
ValueError
(
f
"Coordinates of cleaned atom
{
cat
}
do not match "
f
"coordinates of reference atom
{
rat
}
."
)
def
_check_residues_are_well_defined
(
prot
:
protein
.
Protein
):
"""Checks that all residues contain non-empty atom sets."""
if
(
prot
.
atom_mask
.
sum
(
axis
=-
1
)
==
0
).
any
():
raise
ValueError
(
"Amber minimization can only be performed on proteins with"
" well-defined residues. This protein contains at least"
" one residue with no atoms."
)
def
_check_atom_mask_is_ideal
(
prot
):
"""Sanity-check the atom mask is ideal, up to a possible OXT."""
atom_mask
=
prot
.
atom_mask
ideal_atom_mask
=
protein
.
ideal_atom_mask
(
prot
)
utils
.
assert_equal_nonterminal_atom_types
(
atom_mask
,
ideal_atom_mask
)
def
clean_protein
(
prot
:
protein
.
Protein
,
checks
:
bool
=
True
):
"""Adds missing atoms to Protein instance.
Args:
prot: A `protein.Protein` instance.
checks: A `bool` specifying whether to add additional checks to the cleaning
process.
Returns:
pdb_string: A string of the cleaned protein.
"""
_check_atom_mask_is_ideal
(
prot
)
# Clean pdb.
prot_pdb_string
=
protein
.
to_pdb
(
prot
)
pdb_file
=
io
.
StringIO
(
prot_pdb_string
)
alterations_info
=
{}
fixed_pdb
=
cleanup
.
fix_pdb
(
pdb_file
,
alterations_info
)
fixed_pdb_file
=
io
.
StringIO
(
fixed_pdb
)
pdb_structure
=
PdbStructure
(
fixed_pdb_file
)
cleanup
.
clean_structure
(
pdb_structure
,
alterations_info
)
logging
.
info
(
"alterations info: %s"
,
alterations_info
)
# Write pdb file of cleaned structure.
as_file
=
openmm_app
.
PDBFile
(
pdb_structure
)
pdb_string
=
_get_pdb_string
(
as_file
.
getTopology
(),
as_file
.
getPositions
())
if
checks
:
_check_cleaned_atoms
(
pdb_string
,
prot_pdb_string
)
return
pdb_string
def
make_atom14_positions
(
prot
):
"""Constructs denser atom positions (14 dimensions instead of 37)."""
restype_atom14_to_atom37
=
[]
# mapping (restype, atom14) --> atom37
restype_atom37_to_atom14
=
[]
# mapping (restype, atom37) --> atom14
restype_atom14_mask
=
[]
for
rt
in
residue_constants
.
restypes
:
atom_names
=
residue_constants
.
restype_name_to_atom14_names
[
residue_constants
.
restype_1to3
[
rt
]
]
restype_atom14_to_atom37
.
append
(
[
(
residue_constants
.
atom_order
[
name
]
if
name
else
0
)
for
name
in
atom_names
]
)
atom_name_to_idx14
=
{
name
:
i
for
i
,
name
in
enumerate
(
atom_names
)}
restype_atom37_to_atom14
.
append
(
[
(
atom_name_to_idx14
[
name
]
if
name
in
atom_name_to_idx14
else
0
)
for
name
in
residue_constants
.
atom_types
]
)
restype_atom14_mask
.
append
(
[(
1.0
if
name
else
0.0
)
for
name
in
atom_names
]
)
# Add dummy mapping for restype 'UNK'.
restype_atom14_to_atom37
.
append
([
0
]
*
14
)
restype_atom37_to_atom14
.
append
([
0
]
*
37
)
restype_atom14_mask
.
append
([
0.0
]
*
14
)
restype_atom14_to_atom37
=
np
.
array
(
restype_atom14_to_atom37
,
dtype
=
np
.
int32
)
restype_atom37_to_atom14
=
np
.
array
(
restype_atom37_to_atom14
,
dtype
=
np
.
int32
)
restype_atom14_mask
=
np
.
array
(
restype_atom14_mask
,
dtype
=
np
.
float32
)
# Create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein.
residx_atom14_to_atom37
=
restype_atom14_to_atom37
[
prot
[
"aatype"
]]
residx_atom14_mask
=
restype_atom14_mask
[
prot
[
"aatype"
]]
# Create a mask for known ground truth positions.
residx_atom14_gt_mask
=
residx_atom14_mask
*
np
.
take_along_axis
(
prot
[
"all_atom_mask"
],
residx_atom14_to_atom37
,
axis
=
1
).
astype
(
np
.
float32
)
# Gather the ground truth positions.
residx_atom14_gt_positions
=
residx_atom14_gt_mask
[:,
:,
None
]
*
(
np
.
take_along_axis
(
prot
[
"all_atom_positions"
],
residx_atom14_to_atom37
[...,
None
],
axis
=
1
,
)
)
prot
[
"atom14_atom_exists"
]
=
residx_atom14_mask
prot
[
"atom14_gt_exists"
]
=
residx_atom14_gt_mask
prot
[
"atom14_gt_positions"
]
=
residx_atom14_gt_positions
prot
[
"residx_atom14_to_atom37"
]
=
residx_atom14_to_atom37
.
astype
(
np
.
int64
)
# Create the gather indices for mapping back.
residx_atom37_to_atom14
=
restype_atom37_to_atom14
[
prot
[
"aatype"
]]
prot
[
"residx_atom37_to_atom14"
]
=
residx_atom37_to_atom14
.
astype
(
np
.
int64
)
# Create the corresponding mask.
restype_atom37_mask
=
np
.
zeros
([
21
,
37
],
dtype
=
np
.
float32
)
for
restype
,
restype_letter
in
enumerate
(
residue_constants
.
restypes
):
restype_name
=
residue_constants
.
restype_1to3
[
restype_letter
]
atom_names
=
residue_constants
.
residue_atoms
[
restype_name
]
for
atom_name
in
atom_names
:
atom_type
=
residue_constants
.
atom_order
[
atom_name
]
restype_atom37_mask
[
restype
,
atom_type
]
=
1
residx_atom37_mask
=
restype_atom37_mask
[
prot
[
"aatype"
]]
prot
[
"atom37_atom_exists"
]
=
residx_atom37_mask
# As the atom naming is ambiguous for 7 of the 20 amino acids, provide
# alternative ground truth coordinates where the naming is swapped
restype_3
=
[
residue_constants
.
restype_1to3
[
res
]
for
res
in
residue_constants
.
restypes
]
restype_3
+=
[
"UNK"
]
# Matrices for renaming ambiguous atoms.
all_matrices
=
{
res
:
np
.
eye
(
14
,
dtype
=
np
.
float32
)
for
res
in
restype_3
}
for
resname
,
swap
in
residue_constants
.
residue_atom_renaming_swaps
.
items
():
correspondences
=
np
.
arange
(
14
)
for
source_atom_swap
,
target_atom_swap
in
swap
.
items
():
source_index
=
residue_constants
.
restype_name_to_atom14_names
[
resname
].
index
(
source_atom_swap
)
target_index
=
residue_constants
.
restype_name_to_atom14_names
[
resname
].
index
(
target_atom_swap
)
correspondences
[
source_index
]
=
target_index
correspondences
[
target_index
]
=
source_index
renaming_matrix
=
np
.
zeros
((
14
,
14
),
dtype
=
np
.
float32
)
for
index
,
correspondence
in
enumerate
(
correspondences
):
renaming_matrix
[
index
,
correspondence
]
=
1.0
all_matrices
[
resname
]
=
renaming_matrix
.
astype
(
np
.
float32
)
renaming_matrices
=
np
.
stack
(
[
all_matrices
[
restype
]
for
restype
in
restype_3
]
)
# Pick the transformation matrices for the given residue sequence
# shape (num_res, 14, 14).
renaming_transform
=
renaming_matrices
[
prot
[
"aatype"
]]
# Apply it to the ground truth positions. shape (num_res, 14, 3).
alternative_gt_positions
=
np
.
einsum
(
"rac,rab->rbc"
,
residx_atom14_gt_positions
,
renaming_transform
)
prot
[
"atom14_alt_gt_positions"
]
=
alternative_gt_positions
# Create the mask for the alternative ground truth (differs from the
# ground truth mask, if only one of the atoms in an ambiguous pair has a
# ground truth position).
alternative_gt_mask
=
np
.
einsum
(
"ra,rab->rb"
,
residx_atom14_gt_mask
,
renaming_transform
)
prot
[
"atom14_alt_gt_exists"
]
=
alternative_gt_mask
# Create an ambiguous atoms mask. shape: (21, 14).
restype_atom14_is_ambiguous
=
np
.
zeros
((
21
,
14
),
dtype
=
np
.
float32
)
for
resname
,
swap
in
residue_constants
.
residue_atom_renaming_swaps
.
items
():
for
atom_name1
,
atom_name2
in
swap
.
items
():
restype
=
residue_constants
.
restype_order
[
residue_constants
.
restype_3to1
[
resname
]
]
atom_idx1
=
residue_constants
.
restype_name_to_atom14_names
[
resname
].
index
(
atom_name1
)
atom_idx2
=
residue_constants
.
restype_name_to_atom14_names
[
resname
].
index
(
atom_name2
)
restype_atom14_is_ambiguous
[
restype
,
atom_idx1
]
=
1
restype_atom14_is_ambiguous
[
restype
,
atom_idx2
]
=
1
# From this create an ambiguous_mask for the given sequence.
prot
[
"atom14_atom_is_ambiguous"
]
=
restype_atom14_is_ambiguous
[
prot
[
"aatype"
]
]
return
prot
def
find_violations
(
prot_np
:
protein
.
Protein
):
"""Analyzes a protein and returns structural violation information.
Args:
prot_np: A protein.
Returns:
violations: A `dict` of structure components with structural violations.
violation_metrics: A `dict` of violation metrics.
"""
batch
=
{
"aatype"
:
prot_np
.
aatype
,
"all_atom_positions"
:
prot_np
.
atom_positions
.
astype
(
np
.
float32
),
"all_atom_mask"
:
prot_np
.
atom_mask
.
astype
(
np
.
float32
),
"residue_index"
:
prot_np
.
residue_index
,
}
batch
[
"seq_mask"
]
=
np
.
ones_like
(
batch
[
"aatype"
],
np
.
float32
)
batch
=
make_atom14_positions
(
batch
)
violations
=
loss
.
find_structural_violations_np
(
batch
=
batch
,
atom14_pred_positions
=
batch
[
"atom14_gt_positions"
],
config
=
ml_collections
.
ConfigDict
(
{
"violation_tolerance_factor"
:
12
,
# Taken from model config.
"clash_overlap_tolerance"
:
1.5
,
# Taken from model config.
}
),
)
violation_metrics
=
loss
.
compute_violation_metrics_np
(
batch
=
batch
,
atom14_pred_positions
=
batch
[
"atom14_gt_positions"
],
violations
=
violations
,
)
return
violations
,
violation_metrics
def
get_violation_metrics
(
prot
:
protein
.
Protein
):
"""Computes violation and alignment metrics."""
structural_violations
,
struct_metrics
=
find_violations
(
prot
)
violation_idx
=
np
.
flatnonzero
(
structural_violations
[
"total_per_residue_violations_mask"
]
)
struct_metrics
[
"residue_violations"
]
=
violation_idx
struct_metrics
[
"num_residue_violations"
]
=
len
(
violation_idx
)
struct_metrics
[
"structural_violations"
]
=
structural_violations
return
struct_metrics
def
_run_one_iteration
(
*
,
pdb_string
:
str
,
max_iterations
:
int
,
tolerance
:
float
,
stiffness
:
float
,
restraint_set
:
str
,
max_attempts
:
int
,
exclude_residues
:
Optional
[
Collection
[
int
]]
=
None
,
use_gpu
:
bool
,
):
"""Runs the minimization pipeline.
Args:
pdb_string: A pdb string.
max_iterations: An `int` specifying the maximum number of L-BFGS iterations.
A value of 0 specifies no limit.
tolerance: kcal/mol, the energy tolerance of L-BFGS.
stiffness: kcal/mol A**2, spring constant of heavy atom restraining
potential.
restraint_set: The set of atoms to restrain.
max_attempts: The maximum number of minimization attempts.
exclude_residues: An optional list of zero-indexed residues to exclude from
restraints.
use_gpu: Whether to run relaxation on GPU
Returns:
A `dict` of minimization info.
"""
exclude_residues
=
exclude_residues
or
[]
# Assign physical dimensions.
tolerance
=
tolerance
*
ENERGY
stiffness
=
stiffness
*
ENERGY
/
(
LENGTH
**
2
)
start
=
time
.
perf_counter
()
minimized
=
False
attempts
=
0
while
not
minimized
and
attempts
<
max_attempts
:
attempts
+=
1
try
:
logging
.
info
(
"Minimizing protein, attempt %d of %d."
,
attempts
,
max_attempts
)
ret
=
_openmm_minimize
(
pdb_string
,
max_iterations
=
max_iterations
,
tolerance
=
tolerance
,
stiffness
=
stiffness
,
restraint_set
=
restraint_set
,
exclude_residues
=
exclude_residues
,
use_gpu
=
use_gpu
,
)
minimized
=
True
except
Exception
as
e
:
# pylint: disable=broad-except
print
(
e
)
logging
.
info
(
e
)
if
not
minimized
:
raise
ValueError
(
f
"Minimization failed after
{
max_attempts
}
attempts."
)
ret
[
"opt_time"
]
=
time
.
perf_counter
()
-
start
ret
[
"min_attempts"
]
=
attempts
return
ret
def
run_pipeline
(
prot
:
protein
.
Protein
,
stiffness
:
float
,
use_gpu
:
bool
,
max_outer_iterations
:
int
=
1
,
place_hydrogens_every_iteration
:
bool
=
True
,
max_iterations
:
int
=
0
,
tolerance
:
float
=
2.39
,
restraint_set
:
str
=
"non_hydrogen"
,
max_attempts
:
int
=
100
,
checks
:
bool
=
True
,
exclude_residues
:
Optional
[
Sequence
[
int
]]
=
None
,
):
"""Run iterative amber relax.
Successive relax iterations are performed until all violations have been
resolved. Each iteration involves a restrained Amber minimization, with
restraint exclusions determined by violation-participating residues.
Args:
prot: A protein to be relaxed.
stiffness: kcal/mol A**2, the restraint stiffness.
use_gpu: Whether to run on GPU
max_outer_iterations: The maximum number of iterative minimization.
place_hydrogens_every_iteration: Whether hydrogens are re-initialized
prior to every minimization.
max_iterations: An `int` specifying the maximum number of L-BFGS steps
per relax iteration. A value of 0 specifies no limit.
tolerance: kcal/mol, the energy tolerance of L-BFGS.
The default value is the OpenMM default.
restraint_set: The set of atoms to restrain.
max_attempts: The maximum number of minimization attempts per iteration.
checks: Whether to perform cleaning checks.
exclude_residues: An optional list of zero-indexed residues to exclude from
restraints.
Returns:
out: A dictionary of output values.
"""
# `protein.to_pdb` will strip any poorly-defined residues so we need to
# perform this check before `clean_protein`.
_check_residues_are_well_defined
(
prot
)
pdb_string
=
clean_protein
(
prot
,
checks
=
checks
)
exclude_residues
=
exclude_residues
or
[]
exclude_residues
=
set
(
exclude_residues
)
violations
=
np
.
inf
iteration
=
0
while
violations
>
0
and
iteration
<
max_outer_iterations
:
ret
=
_run_one_iteration
(
pdb_string
=
pdb_string
,
exclude_residues
=
exclude_residues
,
max_iterations
=
max_iterations
,
tolerance
=
tolerance
,
stiffness
=
stiffness
,
restraint_set
=
restraint_set
,
max_attempts
=
max_attempts
,
use_gpu
=
use_gpu
,
)
prot
=
protein
.
from_pdb_string
(
ret
[
"min_pdb"
])
if
place_hydrogens_every_iteration
:
pdb_string
=
clean_protein
(
prot
,
checks
=
True
)
else
:
pdb_string
=
ret
[
"min_pdb"
]
ret
.
update
(
get_violation_metrics
(
prot
))
ret
.
update
(
{
"num_exclusions"
:
len
(
exclude_residues
),
"iteration"
:
iteration
,
}
)
violations
=
ret
[
"violations_per_residue"
]
exclude_residues
=
exclude_residues
.
union
(
ret
[
"residue_violations"
])
logging
.
info
(
"Iteration completed: Einit %.2f Efinal %.2f Time %.2f s "
"num residue violations %d num residue exclusions %d "
,
ret
[
"einit"
],
ret
[
"efinal"
],
ret
[
"opt_time"
],
ret
[
"num_residue_violations"
],
ret
[
"num_exclusions"
],
)
iteration
+=
1
return
ret
fastfold/np/relax/cleanup.py
deleted
100644 → 0
View file @
c80a4df5
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cleans up a PDB file using pdbfixer in preparation for OpenMM simulations.
fix_pdb uses a third-party tool. We also support fixing some additional edge
cases like removing chains of length one (see clean_structure).
"""
import
io
import
pdbfixer
from
simtk.openmm
import
app
from
simtk.openmm.app
import
element
def
fix_pdb
(
pdbfile
,
alterations_info
):
"""Apply pdbfixer to the contents of a PDB file; return a PDB string result.
1) Replaces nonstandard residues.
2) Removes heterogens (non protein residues) including water.
3) Adds missing residues and missing atoms within existing residues.
4) Adds hydrogens assuming pH=7.0.
5) KeepIds is currently true, so the fixer must keep the existing chain and
residue identifiers. This will fail for some files in wider PDB that have
invalid IDs.
Args:
pdbfile: Input PDB file handle.
alterations_info: A dict that will store details of changes made.
Returns:
A PDB string representing the fixed structure.
"""
fixer
=
pdbfixer
.
PDBFixer
(
pdbfile
=
pdbfile
)
fixer
.
findNonstandardResidues
()
alterations_info
[
"nonstandard_residues"
]
=
fixer
.
nonstandardResidues
fixer
.
replaceNonstandardResidues
()
_remove_heterogens
(
fixer
,
alterations_info
,
keep_water
=
False
)
fixer
.
findMissingResidues
()
alterations_info
[
"missing_residues"
]
=
fixer
.
missingResidues
fixer
.
findMissingAtoms
()
alterations_info
[
"missing_heavy_atoms"
]
=
fixer
.
missingAtoms
alterations_info
[
"missing_terminals"
]
=
fixer
.
missingTerminals
fixer
.
addMissingAtoms
(
seed
=
0
)
fixer
.
addMissingHydrogens
()
out_handle
=
io
.
StringIO
()
app
.
PDBFile
.
writeFile
(
fixer
.
topology
,
fixer
.
positions
,
out_handle
,
keepIds
=
True
)
return
out_handle
.
getvalue
()
def
clean_structure
(
pdb_structure
,
alterations_info
):
"""Applies additional fixes to an OpenMM structure, to handle edge cases.
Args:
pdb_structure: An OpenMM structure to modify and fix.
alterations_info: A dict that will store details of changes made.
"""
_replace_met_se
(
pdb_structure
,
alterations_info
)
_remove_chains_of_length_one
(
pdb_structure
,
alterations_info
)
def
_remove_heterogens
(
fixer
,
alterations_info
,
keep_water
):
"""Removes the residues that Pdbfixer considers to be heterogens.
Args:
fixer: A Pdbfixer instance.
alterations_info: A dict that will store details of changes made.
keep_water: If True, water (HOH) is not considered to be a heterogen.
"""
initial_resnames
=
set
()
for
chain
in
fixer
.
topology
.
chains
():
for
residue
in
chain
.
residues
():
initial_resnames
.
add
(
residue
.
name
)
fixer
.
removeHeterogens
(
keepWater
=
keep_water
)
final_resnames
=
set
()
for
chain
in
fixer
.
topology
.
chains
():
for
residue
in
chain
.
residues
():
final_resnames
.
add
(
residue
.
name
)
alterations_info
[
"removed_heterogens"
]
=
initial_resnames
.
difference
(
final_resnames
)
def
_replace_met_se
(
pdb_structure
,
alterations_info
):
"""Replace the Se in any MET residues that were not marked as modified."""
modified_met_residues
=
[]
for
res
in
pdb_structure
.
iter_residues
():
name
=
res
.
get_name_with_spaces
().
strip
()
if
name
==
"MET"
:
s_atom
=
res
.
get_atom
(
"SD"
)
if
s_atom
.
element_symbol
==
"Se"
:
s_atom
.
element_symbol
=
"S"
s_atom
.
element
=
element
.
get_by_symbol
(
"S"
)
modified_met_residues
.
append
(
s_atom
.
residue_number
)
alterations_info
[
"Se_in_MET"
]
=
modified_met_residues
def
_remove_chains_of_length_one
(
pdb_structure
,
alterations_info
):
"""Removes chains that correspond to a single amino acid.
A single amino acid in a chain is both N and C terminus. There is no force
template for this case.
Args:
pdb_structure: An OpenMM pdb_structure to modify and fix.
alterations_info: A dict that will store details of changes made.
"""
removed_chains
=
{}
for
model
in
pdb_structure
.
iter_models
():
valid_chains
=
[
c
for
c
in
model
.
iter_chains
()
if
len
(
c
)
>
1
]
invalid_chain_ids
=
[
c
.
chain_id
for
c
in
model
.
iter_chains
()
if
len
(
c
)
<=
1
]
model
.
chains
=
valid_chains
for
chain_id
in
invalid_chain_ids
:
model
.
chains_by_id
.
pop
(
chain_id
)
removed_chains
[
model
.
number
]
=
invalid_chain_ids
alterations_info
[
"removed_chains"
]
=
removed_chains
fastfold/np/relax/relax.py
deleted
100644 → 0
View file @
c80a4df5
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Amber relaxation."""
from
typing
import
Any
,
Dict
,
Sequence
,
Tuple
from
openfold.np
import
protein
from
openfold.np.relax
import
amber_minimize
,
utils
import
numpy
as
np
class
AmberRelaxation
(
object
):
"""Amber relaxation."""
def
__init__
(
self
,
*
,
max_iterations
:
int
,
tolerance
:
float
,
stiffness
:
float
,
exclude_residues
:
Sequence
[
int
],
max_outer_iterations
:
int
,
use_gpu
:
bool
,
):
"""Initialize Amber Relaxer.
Args:
max_iterations: Maximum number of L-BFGS iterations. 0 means no max.
tolerance: kcal/mol, the energy tolerance of L-BFGS.
stiffness: kcal/mol A**2, spring constant of heavy atom restraining
potential.
exclude_residues: Residues to exclude from per-atom restraining.
Zero-indexed.
max_outer_iterations: Maximum number of violation-informed relax
iterations. A value of 1 will run the non-iterative procedure used in
CASP14. Use 20 so that >95% of the bad cases are relaxed. Relax finishes
as soon as there are no violations, hence in most cases this causes no
slowdown. In the worst case we do 20 outer iterations.
use_gpu: Whether to run on GPU
"""
self
.
_max_iterations
=
max_iterations
self
.
_tolerance
=
tolerance
self
.
_stiffness
=
stiffness
self
.
_exclude_residues
=
exclude_residues
self
.
_max_outer_iterations
=
max_outer_iterations
self
.
_use_gpu
=
use_gpu
def
process
(
self
,
*
,
prot
:
protein
.
Protein
)
->
Tuple
[
str
,
Dict
[
str
,
Any
],
np
.
ndarray
]:
"""Runs Amber relax on a prediction, adds hydrogens, returns PDB string."""
out
=
amber_minimize
.
run_pipeline
(
prot
=
prot
,
max_iterations
=
self
.
_max_iterations
,
tolerance
=
self
.
_tolerance
,
stiffness
=
self
.
_stiffness
,
exclude_residues
=
self
.
_exclude_residues
,
max_outer_iterations
=
self
.
_max_outer_iterations
,
use_gpu
=
self
.
_use_gpu
,
)
min_pos
=
out
[
"pos"
]
start_pos
=
out
[
"posinit"
]
rmsd
=
np
.
sqrt
(
np
.
sum
((
start_pos
-
min_pos
)
**
2
)
/
start_pos
.
shape
[
0
])
debug_data
=
{
"initial_energy"
:
out
[
"einit"
],
"final_energy"
:
out
[
"efinal"
],
"attempts"
:
out
[
"min_attempts"
],
"rmsd"
:
rmsd
,
}
pdb_str
=
amber_minimize
.
clean_protein
(
prot
)
min_pdb
=
utils
.
overwrite_pdb_coordinates
(
pdb_str
,
min_pos
)
min_pdb
=
utils
.
overwrite_b_factors
(
min_pdb
,
prot
.
b_factors
)
utils
.
assert_equal_nonterminal_atom_types
(
protein
.
from_pdb_string
(
min_pdb
).
atom_mask
,
prot
.
atom_mask
)
violations
=
out
[
"structural_violations"
][
"total_per_residue_violations_mask"
]
return
min_pdb
,
debug_data
,
violations
fastfold/np/relax/utils.py
deleted
100644 → 0
View file @
c80a4df5
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utils for minimization."""
import
io
from
openfold.np
import
residue_constants
from
Bio
import
PDB
import
numpy
as
np
from
simtk.openmm
import
app
as
openmm_app
from
simtk.openmm.app.internal.pdbstructure
import
PdbStructure
def
overwrite_pdb_coordinates
(
pdb_str
:
str
,
pos
)
->
str
:
pdb_file
=
io
.
StringIO
(
pdb_str
)
structure
=
PdbStructure
(
pdb_file
)
topology
=
openmm_app
.
PDBFile
(
structure
).
getTopology
()
with
io
.
StringIO
()
as
f
:
openmm_app
.
PDBFile
.
writeFile
(
topology
,
pos
,
f
)
return
f
.
getvalue
()
def
overwrite_b_factors
(
pdb_str
:
str
,
bfactors
:
np
.
ndarray
)
->
str
:
"""Overwrites the B-factors in pdb_str with contents of bfactors array.
Args:
pdb_str: An input PDB string.
bfactors: A numpy array with shape [1, n_residues, 37]. We assume that the
B-factors are per residue; i.e. that the nonzero entries are identical in
[0, i, :].
Returns:
A new PDB string with the B-factors replaced.
"""
if
bfactors
.
shape
[
-
1
]
!=
residue_constants
.
atom_type_num
:
raise
ValueError
(
f
"Invalid final dimension size for bfactors:
{
bfactors
.
shape
[
-
1
]
}
."
)
parser
=
PDB
.
PDBParser
(
QUIET
=
True
)
handle
=
io
.
StringIO
(
pdb_str
)
structure
=
parser
.
get_structure
(
""
,
handle
)
curr_resid
=
(
""
,
""
,
""
)
idx
=
-
1
for
atom
in
structure
.
get_atoms
():
atom_resid
=
atom
.
parent
.
get_id
()
if
atom_resid
!=
curr_resid
:
idx
+=
1
if
idx
>=
bfactors
.
shape
[
0
]:
raise
ValueError
(
"Index into bfactors exceeds number of residues. "
"B-factors shape: {shape}, idx: {idx}."
)
curr_resid
=
atom_resid
atom
.
bfactor
=
bfactors
[
idx
,
residue_constants
.
atom_order
[
"CA"
]]
new_pdb
=
io
.
StringIO
()
pdb_io
=
PDB
.
PDBIO
()
pdb_io
.
set_structure
(
structure
)
pdb_io
.
save
(
new_pdb
)
return
new_pdb
.
getvalue
()
def
assert_equal_nonterminal_atom_types
(
atom_mask
:
np
.
ndarray
,
ref_atom_mask
:
np
.
ndarray
):
"""Checks that pre- and post-minimized proteins have same atom set."""
# Ignore any terminal OXT atoms which may have been added by minimization.
oxt
=
residue_constants
.
atom_order
[
"OXT"
]
no_oxt_mask
=
np
.
ones
(
shape
=
atom_mask
.
shape
,
dtype
=
np
.
bool
)
no_oxt_mask
[...,
oxt
]
=
False
np
.
testing
.
assert_almost_equal
(
ref_atom_mask
[
no_oxt_mask
],
atom_mask
[
no_oxt_mask
]
)
fastfold/np/residue_constants.py
deleted
100644 → 0
View file @
c80a4df5
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Constants used in AlphaFold."""
import
collections
import
functools
import
os
from
typing
import
Mapping
,
List
,
Tuple
from
importlib
import
resources
import
numpy
as
np
import
tree
# Distance from one CA to next CA [trans configuration: omega = 180].
ca_ca
=
3.80209737096
# Format: The list for each AA type contains chi1, chi2, chi3, chi4 in
# this order (or a relevant subset from chi1 onwards). ALA and GLY don't have
# chi angles so their chi angle lists are empty.
chi_angles_atoms
=
{
"ALA"
:
[],
# Chi5 in arginine is always 0 +- 5 degrees, so ignore it.
"ARG"
:
[
[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD"
],
[
"CB"
,
"CG"
,
"CD"
,
"NE"
],
[
"CG"
,
"CD"
,
"NE"
,
"CZ"
],
],
"ASN"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"OD1"
]],
"ASP"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"OD1"
]],
"CYS"
:
[[
"N"
,
"CA"
,
"CB"
,
"SG"
]],
"GLN"
:
[
[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD"
],
[
"CB"
,
"CG"
,
"CD"
,
"OE1"
],
],
"GLU"
:
[
[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD"
],
[
"CB"
,
"CG"
,
"CD"
,
"OE1"
],
],
"GLY"
:
[],
"HIS"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"ND1"
]],
"ILE"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG1"
],
[
"CA"
,
"CB"
,
"CG1"
,
"CD1"
]],
"LEU"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD1"
]],
"LYS"
:
[
[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD"
],
[
"CB"
,
"CG"
,
"CD"
,
"CE"
],
[
"CG"
,
"CD"
,
"CE"
,
"NZ"
],
],
"MET"
:
[
[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"SD"
],
[
"CB"
,
"CG"
,
"SD"
,
"CE"
],
],
"PHE"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD1"
]],
"PRO"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD"
]],
"SER"
:
[[
"N"
,
"CA"
,
"CB"
,
"OG"
]],
"THR"
:
[[
"N"
,
"CA"
,
"CB"
,
"OG1"
]],
"TRP"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD1"
]],
"TYR"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG"
],
[
"CA"
,
"CB"
,
"CG"
,
"CD1"
]],
"VAL"
:
[[
"N"
,
"CA"
,
"CB"
,
"CG1"
]],
}
# If chi angles given in fixed-length array, this matrix determines how to mask
# them for each AA type. The order is as per restype_order (see below).
chi_angles_mask
=
[
[
0.0
,
0.0
,
0.0
,
0.0
],
# ALA
[
1.0
,
1.0
,
1.0
,
1.0
],
# ARG
[
1.0
,
1.0
,
0.0
,
0.0
],
# ASN
[
1.0
,
1.0
,
0.0
,
0.0
],
# ASP
[
1.0
,
0.0
,
0.0
,
0.0
],
# CYS
[
1.0
,
1.0
,
1.0
,
0.0
],
# GLN
[
1.0
,
1.0
,
1.0
,
0.0
],
# GLU
[
0.0
,
0.0
,
0.0
,
0.0
],
# GLY
[
1.0
,
1.0
,
0.0
,
0.0
],
# HIS
[
1.0
,
1.0
,
0.0
,
0.0
],
# ILE
[
1.0
,
1.0
,
0.0
,
0.0
],
# LEU
[
1.0
,
1.0
,
1.0
,
1.0
],
# LYS
[
1.0
,
1.0
,
1.0
,
0.0
],
# MET
[
1.0
,
1.0
,
0.0
,
0.0
],
# PHE
[
1.0
,
1.0
,
0.0
,
0.0
],
# PRO
[
1.0
,
0.0
,
0.0
,
0.0
],
# SER
[
1.0
,
0.0
,
0.0
,
0.0
],
# THR
[
1.0
,
1.0
,
0.0
,
0.0
],
# TRP
[
1.0
,
1.0
,
0.0
,
0.0
],
# TYR
[
1.0
,
0.0
,
0.0
,
0.0
],
# VAL
]
# The following chi angles are pi periodic: they can be rotated by a multiple
# of pi without affecting the structure.
chi_pi_periodic
=
[
[
0.0
,
0.0
,
0.0
,
0.0
],
# ALA
[
0.0
,
0.0
,
0.0
,
0.0
],
# ARG
[
0.0
,
0.0
,
0.0
,
0.0
],
# ASN
[
0.0
,
1.0
,
0.0
,
0.0
],
# ASP
[
0.0
,
0.0
,
0.0
,
0.0
],
# CYS
[
0.0
,
0.0
,
0.0
,
0.0
],
# GLN
[
0.0
,
0.0
,
1.0
,
0.0
],
# GLU
[
0.0
,
0.0
,
0.0
,
0.0
],
# GLY
[
0.0
,
0.0
,
0.0
,
0.0
],
# HIS
[
0.0
,
0.0
,
0.0
,
0.0
],
# ILE
[
0.0
,
0.0
,
0.0
,
0.0
],
# LEU
[
0.0
,
0.0
,
0.0
,
0.0
],
# LYS
[
0.0
,
0.0
,
0.0
,
0.0
],
# MET
[
0.0
,
1.0
,
0.0
,
0.0
],
# PHE
[
0.0
,
0.0
,
0.0
,
0.0
],
# PRO
[
0.0
,
0.0
,
0.0
,
0.0
],
# SER
[
0.0
,
0.0
,
0.0
,
0.0
],
# THR
[
0.0
,
0.0
,
0.0
,
0.0
],
# TRP
[
0.0
,
1.0
,
0.0
,
0.0
],
# TYR
[
0.0
,
0.0
,
0.0
,
0.0
],
# VAL
[
0.0
,
0.0
,
0.0
,
0.0
],
# UNK
]
# Atoms positions relative to the 8 rigid groups, defined by the pre-omega, phi,
# psi and chi angles:
# 0: 'backbone group',
# 1: 'pre-omega-group', (empty)
# 2: 'phi-group', (currently empty, because it defines only hydrogens)
# 3: 'psi-group',
# 4,5,6,7: 'chi1,2,3,4-group'
# The atom positions are relative to the axis-end-atom of the corresponding
# rotation axis. The x-axis is in direction of the rotation axis, and the y-axis
# is defined such that the dihedral-angle-definiting atom (the last entry in
# chi_angles_atoms above) is in the xy-plane (with a positive y-coordinate).
# format: [atomname, group_idx, rel_position]
rigid_group_atom_positions
=
{
"ALA"
:
[
[
"N"
,
0
,
(
-
0.525
,
1.363
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.526
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.529
,
-
0.774
,
-
1.205
)],
[
"O"
,
3
,
(
0.627
,
1.062
,
0.000
)],
],
"ARG"
:
[
[
"N"
,
0
,
(
-
0.524
,
1.362
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.525
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.524
,
-
0.778
,
-
1.209
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
0.000
)],
[
"CG"
,
4
,
(
0.616
,
1.390
,
-
0.000
)],
[
"CD"
,
5
,
(
0.564
,
1.414
,
0.000
)],
[
"NE"
,
6
,
(
0.539
,
1.357
,
-
0.000
)],
[
"NH1"
,
7
,
(
0.206
,
2.301
,
0.000
)],
[
"NH2"
,
7
,
(
2.078
,
0.978
,
-
0.000
)],
[
"CZ"
,
7
,
(
0.758
,
1.093
,
-
0.000
)],
],
"ASN"
:
[
[
"N"
,
0
,
(
-
0.536
,
1.357
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.526
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.531
,
-
0.787
,
-
1.200
)],
[
"O"
,
3
,
(
0.625
,
1.062
,
0.000
)],
[
"CG"
,
4
,
(
0.584
,
1.399
,
0.000
)],
[
"ND2"
,
5
,
(
0.593
,
-
1.188
,
0.001
)],
[
"OD1"
,
5
,
(
0.633
,
1.059
,
0.000
)],
],
"ASP"
:
[
[
"N"
,
0
,
(
-
0.525
,
1.362
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.527
,
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.526
,
-
0.778
,
-
1.208
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
-
0.000
)],
[
"CG"
,
4
,
(
0.593
,
1.398
,
-
0.000
)],
[
"OD1"
,
5
,
(
0.610
,
1.091
,
0.000
)],
[
"OD2"
,
5
,
(
0.592
,
-
1.101
,
-
0.003
)],
],
"CYS"
:
[
[
"N"
,
0
,
(
-
0.522
,
1.362
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.524
,
0.000
,
0.000
)],
[
"CB"
,
0
,
(
-
0.519
,
-
0.773
,
-
1.212
)],
[
"O"
,
3
,
(
0.625
,
1.062
,
-
0.000
)],
[
"SG"
,
4
,
(
0.728
,
1.653
,
0.000
)],
],
"GLN"
:
[
[
"N"
,
0
,
(
-
0.526
,
1.361
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.526
,
0.000
,
0.000
)],
[
"CB"
,
0
,
(
-
0.525
,
-
0.779
,
-
1.207
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
-
0.000
)],
[
"CG"
,
4
,
(
0.615
,
1.393
,
0.000
)],
[
"CD"
,
5
,
(
0.587
,
1.399
,
-
0.000
)],
[
"NE2"
,
6
,
(
0.593
,
-
1.189
,
-
0.001
)],
[
"OE1"
,
6
,
(
0.634
,
1.060
,
0.000
)],
],
"GLU"
:
[
[
"N"
,
0
,
(
-
0.528
,
1.361
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.526
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.526
,
-
0.781
,
-
1.207
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
0.000
)],
[
"CG"
,
4
,
(
0.615
,
1.392
,
0.000
)],
[
"CD"
,
5
,
(
0.600
,
1.397
,
0.000
)],
[
"OE1"
,
6
,
(
0.607
,
1.095
,
-
0.000
)],
[
"OE2"
,
6
,
(
0.589
,
-
1.104
,
-
0.001
)],
],
"GLY"
:
[
[
"N"
,
0
,
(
-
0.572
,
1.337
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.517
,
-
0.000
,
-
0.000
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
-
0.000
)],
],
"HIS"
:
[
[
"N"
,
0
,
(
-
0.527
,
1.360
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.525
,
0.000
,
0.000
)],
[
"CB"
,
0
,
(
-
0.525
,
-
0.778
,
-
1.208
)],
[
"O"
,
3
,
(
0.625
,
1.063
,
0.000
)],
[
"CG"
,
4
,
(
0.600
,
1.370
,
-
0.000
)],
[
"CD2"
,
5
,
(
0.889
,
-
1.021
,
0.003
)],
[
"ND1"
,
5
,
(
0.744
,
1.160
,
-
0.000
)],
[
"CE1"
,
5
,
(
2.030
,
0.851
,
0.002
)],
[
"NE2"
,
5
,
(
2.145
,
-
0.466
,
0.004
)],
],
"ILE"
:
[
[
"N"
,
0
,
(
-
0.493
,
1.373
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.527
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.536
,
-
0.793
,
-
1.213
)],
[
"O"
,
3
,
(
0.627
,
1.062
,
-
0.000
)],
[
"CG1"
,
4
,
(
0.534
,
1.437
,
-
0.000
)],
[
"CG2"
,
4
,
(
0.540
,
-
0.785
,
-
1.199
)],
[
"CD1"
,
5
,
(
0.619
,
1.391
,
0.000
)],
],
"LEU"
:
[
[
"N"
,
0
,
(
-
0.520
,
1.363
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.525
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.522
,
-
0.773
,
-
1.214
)],
[
"O"
,
3
,
(
0.625
,
1.063
,
-
0.000
)],
[
"CG"
,
4
,
(
0.678
,
1.371
,
0.000
)],
[
"CD1"
,
5
,
(
0.530
,
1.430
,
-
0.000
)],
[
"CD2"
,
5
,
(
0.535
,
-
0.774
,
1.200
)],
],
"LYS"
:
[
[
"N"
,
0
,
(
-
0.526
,
1.362
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.526
,
0.000
,
0.000
)],
[
"CB"
,
0
,
(
-
0.524
,
-
0.778
,
-
1.208
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
-
0.000
)],
[
"CG"
,
4
,
(
0.619
,
1.390
,
0.000
)],
[
"CD"
,
5
,
(
0.559
,
1.417
,
0.000
)],
[
"CE"
,
6
,
(
0.560
,
1.416
,
0.000
)],
[
"NZ"
,
7
,
(
0.554
,
1.387
,
0.000
)],
],
"MET"
:
[
[
"N"
,
0
,
(
-
0.521
,
1.364
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.525
,
0.000
,
0.000
)],
[
"CB"
,
0
,
(
-
0.523
,
-
0.776
,
-
1.210
)],
[
"O"
,
3
,
(
0.625
,
1.062
,
-
0.000
)],
[
"CG"
,
4
,
(
0.613
,
1.391
,
-
0.000
)],
[
"SD"
,
5
,
(
0.703
,
1.695
,
0.000
)],
[
"CE"
,
6
,
(
0.320
,
1.786
,
-
0.000
)],
],
"PHE"
:
[
[
"N"
,
0
,
(
-
0.518
,
1.363
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.524
,
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.525
,
-
0.776
,
-
1.212
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
-
0.000
)],
[
"CG"
,
4
,
(
0.607
,
1.377
,
0.000
)],
[
"CD1"
,
5
,
(
0.709
,
1.195
,
-
0.000
)],
[
"CD2"
,
5
,
(
0.706
,
-
1.196
,
0.000
)],
[
"CE1"
,
5
,
(
2.102
,
1.198
,
-
0.000
)],
[
"CE2"
,
5
,
(
2.098
,
-
1.201
,
-
0.000
)],
[
"CZ"
,
5
,
(
2.794
,
-
0.003
,
-
0.001
)],
],
"PRO"
:
[
[
"N"
,
0
,
(
-
0.566
,
1.351
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.527
,
-
0.000
,
0.000
)],
[
"CB"
,
0
,
(
-
0.546
,
-
0.611
,
-
1.293
)],
[
"O"
,
3
,
(
0.621
,
1.066
,
0.000
)],
[
"CG"
,
4
,
(
0.382
,
1.445
,
0.0
)],
# ['CD', 5, (0.427, 1.440, 0.0)],
[
"CD"
,
5
,
(
0.477
,
1.424
,
0.0
)],
# manually made angle 2 degrees larger
],
"SER"
:
[
[
"N"
,
0
,
(
-
0.529
,
1.360
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.525
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.518
,
-
0.777
,
-
1.211
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
-
0.000
)],
[
"OG"
,
4
,
(
0.503
,
1.325
,
0.000
)],
],
"THR"
:
[
[
"N"
,
0
,
(
-
0.517
,
1.364
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.526
,
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.516
,
-
0.793
,
-
1.215
)],
[
"O"
,
3
,
(
0.626
,
1.062
,
0.000
)],
[
"CG2"
,
4
,
(
0.550
,
-
0.718
,
-
1.228
)],
[
"OG1"
,
4
,
(
0.472
,
1.353
,
0.000
)],
],
"TRP"
:
[
[
"N"
,
0
,
(
-
0.521
,
1.363
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.525
,
-
0.000
,
0.000
)],
[
"CB"
,
0
,
(
-
0.523
,
-
0.776
,
-
1.212
)],
[
"O"
,
3
,
(
0.627
,
1.062
,
0.000
)],
[
"CG"
,
4
,
(
0.609
,
1.370
,
-
0.000
)],
[
"CD1"
,
5
,
(
0.824
,
1.091
,
0.000
)],
[
"CD2"
,
5
,
(
0.854
,
-
1.148
,
-
0.005
)],
[
"CE2"
,
5
,
(
2.186
,
-
0.678
,
-
0.007
)],
[
"CE3"
,
5
,
(
0.622
,
-
2.530
,
-
0.007
)],
[
"NE1"
,
5
,
(
2.140
,
0.690
,
-
0.004
)],
[
"CH2"
,
5
,
(
3.028
,
-
2.890
,
-
0.013
)],
[
"CZ2"
,
5
,
(
3.283
,
-
1.543
,
-
0.011
)],
[
"CZ3"
,
5
,
(
1.715
,
-
3.389
,
-
0.011
)],
],
"TYR"
:
[
[
"N"
,
0
,
(
-
0.522
,
1.362
,
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.524
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.522
,
-
0.776
,
-
1.213
)],
[
"O"
,
3
,
(
0.627
,
1.062
,
-
0.000
)],
[
"CG"
,
4
,
(
0.607
,
1.382
,
-
0.000
)],
[
"CD1"
,
5
,
(
0.716
,
1.195
,
-
0.000
)],
[
"CD2"
,
5
,
(
0.713
,
-
1.194
,
-
0.001
)],
[
"CE1"
,
5
,
(
2.107
,
1.200
,
-
0.002
)],
[
"CE2"
,
5
,
(
2.104
,
-
1.201
,
-
0.003
)],
[
"OH"
,
5
,
(
4.168
,
-
0.002
,
-
0.005
)],
[
"CZ"
,
5
,
(
2.791
,
-
0.001
,
-
0.003
)],
],
"VAL"
:
[
[
"N"
,
0
,
(
-
0.494
,
1.373
,
-
0.000
)],
[
"CA"
,
0
,
(
0.000
,
0.000
,
0.000
)],
[
"C"
,
0
,
(
1.527
,
-
0.000
,
-
0.000
)],
[
"CB"
,
0
,
(
-
0.533
,
-
0.795
,
-
1.213
)],
[
"O"
,
3
,
(
0.627
,
1.062
,
-
0.000
)],
[
"CG1"
,
4
,
(
0.540
,
1.429
,
-
0.000
)],
[
"CG2"
,
4
,
(
0.533
,
-
0.776
,
1.203
)],
],
}
# A list of atoms (excluding hydrogen) for each AA type. PDB naming convention.
residue_atoms
=
{
"ALA"
:
[
"C"
,
"CA"
,
"CB"
,
"N"
,
"O"
],
"ARG"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD"
,
"CZ"
,
"N"
,
"NE"
,
"O"
,
"NH1"
,
"NH2"
],
"ASP"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"N"
,
"O"
,
"OD1"
,
"OD2"
],
"ASN"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"N"
,
"ND2"
,
"O"
,
"OD1"
],
"CYS"
:
[
"C"
,
"CA"
,
"CB"
,
"N"
,
"O"
,
"SG"
],
"GLU"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD"
,
"N"
,
"O"
,
"OE1"
,
"OE2"
],
"GLN"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD"
,
"N"
,
"NE2"
,
"O"
,
"OE1"
],
"GLY"
:
[
"C"
,
"CA"
,
"N"
,
"O"
],
"HIS"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD2"
,
"CE1"
,
"N"
,
"ND1"
,
"NE2"
,
"O"
],
"ILE"
:
[
"C"
,
"CA"
,
"CB"
,
"CG1"
,
"CG2"
,
"CD1"
,
"N"
,
"O"
],
"LEU"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD1"
,
"CD2"
,
"N"
,
"O"
],
"LYS"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD"
,
"CE"
,
"N"
,
"NZ"
,
"O"
],
"MET"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CE"
,
"N"
,
"O"
,
"SD"
],
"PHE"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD1"
,
"CD2"
,
"CE1"
,
"CE2"
,
"CZ"
,
"N"
,
"O"
],
"PRO"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD"
,
"N"
,
"O"
],
"SER"
:
[
"C"
,
"CA"
,
"CB"
,
"N"
,
"O"
,
"OG"
],
"THR"
:
[
"C"
,
"CA"
,
"CB"
,
"CG2"
,
"N"
,
"O"
,
"OG1"
],
"TRP"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD1"
,
"CD2"
,
"CE2"
,
"CE3"
,
"CZ2"
,
"CZ3"
,
"CH2"
,
"N"
,
"NE1"
,
"O"
,
],
"TYR"
:
[
"C"
,
"CA"
,
"CB"
,
"CG"
,
"CD1"
,
"CD2"
,
"CE1"
,
"CE2"
,
"CZ"
,
"N"
,
"O"
,
"OH"
,
],
"VAL"
:
[
"C"
,
"CA"
,
"CB"
,
"CG1"
,
"CG2"
,
"N"
,
"O"
],
}
# Naming swaps for ambiguous atom names.
# Due to symmetries in the amino acids the naming of atoms is ambiguous in
# 4 of the 20 amino acids.
# (The LDDT paper lists 7 amino acids as ambiguous, but the naming ambiguities
# in LEU, VAL and ARG can be resolved by using the 3d constellations of
# the 'ambiguous' atoms and their neighbours)
# TODO: ^ interpret this
residue_atom_renaming_swaps
=
{
"ASP"
:
{
"OD1"
:
"OD2"
},
"GLU"
:
{
"OE1"
:
"OE2"
},
"PHE"
:
{
"CD1"
:
"CD2"
,
"CE1"
:
"CE2"
},
"TYR"
:
{
"CD1"
:
"CD2"
,
"CE1"
:
"CE2"
},
}
# Van der Waals radii [Angstroem] of the atoms (from Wikipedia)
van_der_waals_radius
=
{
"C"
:
1.7
,
"N"
:
1.55
,
"O"
:
1.52
,
"S"
:
1.8
,
}
Bond
=
collections
.
namedtuple
(
"Bond"
,
[
"atom1_name"
,
"atom2_name"
,
"length"
,
"stddev"
]
)
BondAngle
=
collections
.
namedtuple
(
"BondAngle"
,
[
"atom1_name"
,
"atom2_name"
,
"atom3name"
,
"angle_rad"
,
"stddev"
],
)
@
functools
.
lru_cache
(
maxsize
=
None
)
def
load_stereo_chemical_props
()
->
Tuple
[
Mapping
[
str
,
List
[
Bond
]],
Mapping
[
str
,
List
[
Bond
]],
Mapping
[
str
,
List
[
BondAngle
]],
]:
"""Load stereo_chemical_props.txt into a nice structure.
Load literature values for bond lengths and bond angles and translate
bond angles into the length of the opposite edge of the triangle
("residue_virtual_bonds").
Returns:
residue_bonds: Dict that maps resname -> list of Bond tuples
residue_virtual_bonds: Dict that maps resname -> list of Bond tuples
residue_bond_angles: Dict that maps resname -> list of BondAngle tuples
"""
# TODO: this file should be downloaded in a setup script
stereo_chemical_props
=
resources
.
read_text
(
"openfold.resources"
,
"stereo_chemical_props.txt"
)
lines_iter
=
iter
(
stereo_chemical_props
.
splitlines
())
# Load bond lengths.
residue_bonds
=
{}
next
(
lines_iter
)
# Skip header line.
for
line
in
lines_iter
:
if
line
.
strip
()
==
"-"
:
break
bond
,
resname
,
length
,
stddev
=
line
.
split
()
atom1
,
atom2
=
bond
.
split
(
"-"
)
if
resname
not
in
residue_bonds
:
residue_bonds
[
resname
]
=
[]
residue_bonds
[
resname
].
append
(
Bond
(
atom1
,
atom2
,
float
(
length
),
float
(
stddev
))
)
residue_bonds
[
"UNK"
]
=
[]
# Load bond angles.
residue_bond_angles
=
{}
next
(
lines_iter
)
# Skip empty line.
next
(
lines_iter
)
# Skip header line.
for
line
in
lines_iter
:
if
line
.
strip
()
==
"-"
:
break
bond
,
resname
,
angle_degree
,
stddev_degree
=
line
.
split
()
atom1
,
atom2
,
atom3
=
bond
.
split
(
"-"
)
if
resname
not
in
residue_bond_angles
:
residue_bond_angles
[
resname
]
=
[]
residue_bond_angles
[
resname
].
append
(
BondAngle
(
atom1
,
atom2
,
atom3
,
float
(
angle_degree
)
/
180.0
*
np
.
pi
,
float
(
stddev_degree
)
/
180.0
*
np
.
pi
,
)
)
residue_bond_angles
[
"UNK"
]
=
[]
def
make_bond_key
(
atom1_name
,
atom2_name
):
"""Unique key to lookup bonds."""
return
"-"
.
join
(
sorted
([
atom1_name
,
atom2_name
]))
# Translate bond angles into distances ("virtual bonds").
residue_virtual_bonds
=
{}
for
resname
,
bond_angles
in
residue_bond_angles
.
items
():
# Create a fast lookup dict for bond lengths.
bond_cache
=
{}
for
b
in
residue_bonds
[
resname
]:
bond_cache
[
make_bond_key
(
b
.
atom1_name
,
b
.
atom2_name
)]
=
b
residue_virtual_bonds
[
resname
]
=
[]
for
ba
in
bond_angles
:
bond1
=
bond_cache
[
make_bond_key
(
ba
.
atom1_name
,
ba
.
atom2_name
)]
bond2
=
bond_cache
[
make_bond_key
(
ba
.
atom2_name
,
ba
.
atom3name
)]
# Compute distance between atom1 and atom3 using the law of cosines
# c^2 = a^2 + b^2 - 2ab*cos(gamma).
gamma
=
ba
.
angle_rad
length
=
np
.
sqrt
(
bond1
.
length
**
2
+
bond2
.
length
**
2
-
2
*
bond1
.
length
*
bond2
.
length
*
np
.
cos
(
gamma
)
)
# Propagation of uncertainty assuming uncorrelated errors.
dl_outer
=
0.5
/
length
dl_dgamma
=
(
2
*
bond1
.
length
*
bond2
.
length
*
np
.
sin
(
gamma
)
)
*
dl_outer
dl_db1
=
(
2
*
bond1
.
length
-
2
*
bond2
.
length
*
np
.
cos
(
gamma
)
)
*
dl_outer
dl_db2
=
(
2
*
bond2
.
length
-
2
*
bond1
.
length
*
np
.
cos
(
gamma
)
)
*
dl_outer
stddev
=
np
.
sqrt
(
(
dl_dgamma
*
ba
.
stddev
)
**
2
+
(
dl_db1
*
bond1
.
stddev
)
**
2
+
(
dl_db2
*
bond2
.
stddev
)
**
2
)
residue_virtual_bonds
[
resname
].
append
(
Bond
(
ba
.
atom1_name
,
ba
.
atom3name
,
length
,
stddev
)
)
return
(
residue_bonds
,
residue_virtual_bonds
,
residue_bond_angles
)
# Between-residue bond lengths for general bonds (first element) and for Proline
# (second element).
between_res_bond_length_c_n
=
[
1.329
,
1.341
]
between_res_bond_length_stddev_c_n
=
[
0.014
,
0.016
]
# Between-residue cos_angles.
between_res_cos_angles_c_n_ca
=
[
-
0.5203
,
0.0353
]
# degrees: 121.352 +- 2.315
between_res_cos_angles_ca_c_n
=
[
-
0.4473
,
0.0311
]
# degrees: 116.568 +- 1.995
# This mapping is used when we need to store atom data in a format that requires
# fixed atom data size for every residue (e.g. a numpy array).
atom_types
=
[
"N"
,
"CA"
,
"C"
,
"CB"
,
"O"
,
"CG"
,
"CG1"
,
"CG2"
,
"OG"
,
"OG1"
,
"SG"
,
"CD"
,
"CD1"
,
"CD2"
,
"ND1"
,
"ND2"
,
"OD1"
,
"OD2"
,
"SD"
,
"CE"
,
"CE1"
,
"CE2"
,
"CE3"
,
"NE"
,
"NE1"
,
"NE2"
,
"OE1"
,
"OE2"
,
"CH2"
,
"NH1"
,
"NH2"
,
"OH"
,
"CZ"
,
"CZ2"
,
"CZ3"
,
"NZ"
,
"OXT"
,
]
atom_order
=
{
atom_type
:
i
for
i
,
atom_type
in
enumerate
(
atom_types
)}
atom_type_num
=
len
(
atom_types
)
# := 37.
# A compact atom encoding with 14 columns
# pylint: disable=line-too-long
# pylint: disable=bad-whitespace
restype_name_to_atom14_names
=
{
"ALA"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
],
"ARG"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD"
,
"NE"
,
"CZ"
,
"NH1"
,
"NH2"
,
""
,
""
,
""
,
],
"ASN"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"OD1"
,
"ND2"
,
""
,
""
,
""
,
""
,
""
,
""
,
],
"ASP"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"OD1"
,
"OD2"
,
""
,
""
,
""
,
""
,
""
,
""
,
],
"CYS"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"SG"
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
],
"GLN"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD"
,
"OE1"
,
"NE2"
,
""
,
""
,
""
,
""
,
""
,
],
"GLU"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD"
,
"OE1"
,
"OE2"
,
""
,
""
,
""
,
""
,
""
,
],
"GLY"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
],
"HIS"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"ND1"
,
"CD2"
,
"CE1"
,
"NE2"
,
""
,
""
,
""
,
""
,
],
"ILE"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG1"
,
"CG2"
,
"CD1"
,
""
,
""
,
""
,
""
,
""
,
""
,
],
"LEU"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD1"
,
"CD2"
,
""
,
""
,
""
,
""
,
""
,
""
,
],
"LYS"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD"
,
"CE"
,
"NZ"
,
""
,
""
,
""
,
""
,
""
,
],
"MET"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"SD"
,
"CE"
,
""
,
""
,
""
,
""
,
""
,
""
,
],
"PHE"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD1"
,
"CD2"
,
"CE1"
,
"CE2"
,
"CZ"
,
""
,
""
,
""
,
],
"PRO"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD"
,
""
,
""
,
""
,
""
,
""
,
""
,
""
],
"SER"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"OG"
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
],
"THR"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"OG1"
,
"CG2"
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
],
"TRP"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD1"
,
"CD2"
,
"NE1"
,
"CE2"
,
"CE3"
,
"CZ2"
,
"CZ3"
,
"CH2"
,
],
"TYR"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG"
,
"CD1"
,
"CD2"
,
"CE1"
,
"CE2"
,
"CZ"
,
"OH"
,
""
,
""
,
],
"VAL"
:
[
"N"
,
"CA"
,
"C"
,
"O"
,
"CB"
,
"CG1"
,
"CG2"
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
],
"UNK"
:
[
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
,
""
],
}
# pylint: enable=line-too-long
# pylint: enable=bad-whitespace
# This is the standard residue order when coding AA type as a number.
# Reproduce it by taking 3-letter AA codes and sorting them alphabetically.
restypes
=
[
"A"
,
"R"
,
"N"
,
"D"
,
"C"
,
"Q"
,
"E"
,
"G"
,
"H"
,
"I"
,
"L"
,
"K"
,
"M"
,
"F"
,
"P"
,
"S"
,
"T"
,
"W"
,
"Y"
,
"V"
,
]
restype_order
=
{
restype
:
i
for
i
,
restype
in
enumerate
(
restypes
)}
restype_num
=
len
(
restypes
)
# := 20.
unk_restype_index
=
restype_num
# Catch-all index for unknown restypes.
restypes_with_x
=
restypes
+
[
"X"
]
restype_order_with_x
=
{
restype
:
i
for
i
,
restype
in
enumerate
(
restypes_with_x
)}
def
sequence_to_onehot
(
sequence
:
str
,
mapping
:
Mapping
[
str
,
int
],
map_unknown_to_x
:
bool
=
False
)
->
np
.
ndarray
:
"""Maps the given sequence into a one-hot encoded matrix.
Args:
sequence: An amino acid sequence.
mapping: A dictionary mapping amino acids to integers.
map_unknown_to_x: If True, any amino acid that is not in the mapping will be
mapped to the unknown amino acid 'X'. If the mapping doesn't contain
amino acid 'X', an error will be thrown. If False, any amino acid not in
the mapping will throw an error.
Returns:
A numpy array of shape (seq_len, num_unique_aas) with one-hot encoding of
the sequence.
Raises:
ValueError: If the mapping doesn't contain values from 0 to
num_unique_aas - 1 without any gaps.
"""
num_entries
=
max
(
mapping
.
values
())
+
1
if
sorted
(
set
(
mapping
.
values
()))
!=
list
(
range
(
num_entries
)):
raise
ValueError
(
"The mapping must have values from 0 to num_unique_aas-1 "
"without any gaps. Got: %s"
%
sorted
(
mapping
.
values
())
)
one_hot_arr
=
np
.
zeros
((
len
(
sequence
),
num_entries
),
dtype
=
np
.
int32
)
for
aa_index
,
aa_type
in
enumerate
(
sequence
):
if
map_unknown_to_x
:
if
aa_type
.
isalpha
()
and
aa_type
.
isupper
():
aa_id
=
mapping
.
get
(
aa_type
,
mapping
[
"X"
])
else
:
raise
ValueError
(
f
"Invalid character in the sequence:
{
aa_type
}
"
)
else
:
aa_id
=
mapping
[
aa_type
]
one_hot_arr
[
aa_index
,
aa_id
]
=
1
return
one_hot_arr
restype_1to3
=
{
"A"
:
"ALA"
,
"R"
:
"ARG"
,
"N"
:
"ASN"
,
"D"
:
"ASP"
,
"C"
:
"CYS"
,
"Q"
:
"GLN"
,
"E"
:
"GLU"
,
"G"
:
"GLY"
,
"H"
:
"HIS"
,
"I"
:
"ILE"
,
"L"
:
"LEU"
,
"K"
:
"LYS"
,
"M"
:
"MET"
,
"F"
:
"PHE"
,
"P"
:
"PRO"
,
"S"
:
"SER"
,
"T"
:
"THR"
,
"W"
:
"TRP"
,
"Y"
:
"TYR"
,
"V"
:
"VAL"
,
}
# NB: restype_3to1 differs from Bio.PDB.protein_letters_3to1 by being a simple
# 1-to-1 mapping of 3 letter names to one letter names. The latter contains
# many more, and less common, three letter names as keys and maps many of these
# to the same one letter name (including 'X' and 'U' which we don't use here).
restype_3to1
=
{
v
:
k
for
k
,
v
in
restype_1to3
.
items
()}
# Define a restype name for all unknown residues.
unk_restype
=
"UNK"
resnames
=
[
restype_1to3
[
r
]
for
r
in
restypes
]
+
[
unk_restype
]
resname_to_idx
=
{
resname
:
i
for
i
,
resname
in
enumerate
(
resnames
)}
# The mapping here uses hhblits convention, so that B is mapped to D, J and O
# are mapped to X, U is mapped to C, and Z is mapped to E. Other than that the
# remaining 20 amino acids are kept in alphabetical order.
# There are 2 non-amino acid codes, X (representing any amino acid) and
# "-" representing a missing amino acid in an alignment. The id for these
# codes is put at the end (20 and 21) so that they can easily be ignored if
# desired.
HHBLITS_AA_TO_ID
=
{
"A"
:
0
,
"B"
:
2
,
"C"
:
1
,
"D"
:
2
,
"E"
:
3
,
"F"
:
4
,
"G"
:
5
,
"H"
:
6
,
"I"
:
7
,
"J"
:
20
,
"K"
:
8
,
"L"
:
9
,
"M"
:
10
,
"N"
:
11
,
"O"
:
20
,
"P"
:
12
,
"Q"
:
13
,
"R"
:
14
,
"S"
:
15
,
"T"
:
16
,
"U"
:
1
,
"V"
:
17
,
"W"
:
18
,
"X"
:
20
,
"Y"
:
19
,
"Z"
:
3
,
"-"
:
21
,
}
# Partial inversion of HHBLITS_AA_TO_ID.
ID_TO_HHBLITS_AA
=
{
0
:
"A"
,
1
:
"C"
,
# Also U.
2
:
"D"
,
# Also B.
3
:
"E"
,
# Also Z.
4
:
"F"
,
5
:
"G"
,
6
:
"H"
,
7
:
"I"
,
8
:
"K"
,
9
:
"L"
,
10
:
"M"
,
11
:
"N"
,
12
:
"P"
,
13
:
"Q"
,
14
:
"R"
,
15
:
"S"
,
16
:
"T"
,
17
:
"V"
,
18
:
"W"
,
19
:
"Y"
,
20
:
"X"
,
# Includes J and O.
21
:
"-"
,
}
restypes_with_x_and_gap
=
restypes
+
[
"X"
,
"-"
]
MAP_HHBLITS_AATYPE_TO_OUR_AATYPE
=
tuple
(
restypes_with_x_and_gap
.
index
(
ID_TO_HHBLITS_AA
[
i
])
for
i
in
range
(
len
(
restypes_with_x_and_gap
))
)
def
_make_standard_atom_mask
()
->
np
.
ndarray
:
"""Returns [num_res_types, num_atom_types] mask array."""
# +1 to account for unknown (all 0s).
mask
=
np
.
zeros
([
restype_num
+
1
,
atom_type_num
],
dtype
=
np
.
int32
)
for
restype
,
restype_letter
in
enumerate
(
restypes
):
restype_name
=
restype_1to3
[
restype_letter
]
atom_names
=
residue_atoms
[
restype_name
]
for
atom_name
in
atom_names
:
atom_type
=
atom_order
[
atom_name
]
mask
[
restype
,
atom_type
]
=
1
return
mask
STANDARD_ATOM_MASK
=
_make_standard_atom_mask
()
# A one hot representation for the first and second atoms defining the axis
# of rotation for each chi-angle in each residue.
def
chi_angle_atom
(
atom_index
:
int
)
->
np
.
ndarray
:
"""Define chi-angle rigid groups via one-hot representations."""
chi_angles_index
=
{}
one_hots
=
[]
for
k
,
v
in
chi_angles_atoms
.
items
():
indices
=
[
atom_types
.
index
(
s
[
atom_index
])
for
s
in
v
]
indices
.
extend
([
-
1
]
*
(
4
-
len
(
indices
)))
chi_angles_index
[
k
]
=
indices
for
r
in
restypes
:
res3
=
restype_1to3
[
r
]
one_hot
=
np
.
eye
(
atom_type_num
)[
chi_angles_index
[
res3
]]
one_hots
.
append
(
one_hot
)
one_hots
.
append
(
np
.
zeros
([
4
,
atom_type_num
]))
# Add zeros for residue `X`.
one_hot
=
np
.
stack
(
one_hots
,
axis
=
0
)
one_hot
=
np
.
transpose
(
one_hot
,
[
0
,
2
,
1
])
return
one_hot
chi_atom_1_one_hot
=
chi_angle_atom
(
1
)
chi_atom_2_one_hot
=
chi_angle_atom
(
2
)
# An array like chi_angles_atoms but using indices rather than names.
chi_angles_atom_indices
=
[
chi_angles_atoms
[
restype_1to3
[
r
]]
for
r
in
restypes
]
chi_angles_atom_indices
=
tree
.
map_structure
(
lambda
atom_name
:
atom_order
[
atom_name
],
chi_angles_atom_indices
)
chi_angles_atom_indices
=
np
.
array
(
[
chi_atoms
+
([[
0
,
0
,
0
,
0
]]
*
(
4
-
len
(
chi_atoms
)))
for
chi_atoms
in
chi_angles_atom_indices
]
)
# Mapping from (res_name, atom_name) pairs to the atom's chi group index
# and atom index within that group.
chi_groups_for_atom
=
collections
.
defaultdict
(
list
)
for
res_name
,
chi_angle_atoms_for_res
in
chi_angles_atoms
.
items
():
for
chi_group_i
,
chi_group
in
enumerate
(
chi_angle_atoms_for_res
):
for
atom_i
,
atom
in
enumerate
(
chi_group
):
chi_groups_for_atom
[(
res_name
,
atom
)].
append
((
chi_group_i
,
atom_i
))
chi_groups_for_atom
=
dict
(
chi_groups_for_atom
)
def
_make_rigid_transformation_4x4
(
ex
,
ey
,
translation
):
"""Create a rigid 4x4 transformation matrix from two axes and transl."""
# Normalize ex.
ex_normalized
=
ex
/
np
.
linalg
.
norm
(
ex
)
# make ey perpendicular to ex
ey_normalized
=
ey
-
np
.
dot
(
ey
,
ex_normalized
)
*
ex_normalized
ey_normalized
/=
np
.
linalg
.
norm
(
ey_normalized
)
# compute ez as cross product
eznorm
=
np
.
cross
(
ex_normalized
,
ey_normalized
)
m
=
np
.
stack
(
[
ex_normalized
,
ey_normalized
,
eznorm
,
translation
]
).
transpose
()
m
=
np
.
concatenate
([
m
,
[[
0.0
,
0.0
,
0.0
,
1.0
]]],
axis
=
0
)
return
m
# create an array with (restype, atomtype) --> rigid_group_idx
# and an array with (restype, atomtype, coord) for the atom positions
# and compute affine transformation matrices (4,4) from one rigid group to the
# previous group
restype_atom37_to_rigid_group
=
np
.
zeros
([
21
,
37
],
dtype
=
np
.
int
)
restype_atom37_mask
=
np
.
zeros
([
21
,
37
],
dtype
=
np
.
float32
)
restype_atom37_rigid_group_positions
=
np
.
zeros
([
21
,
37
,
3
],
dtype
=
np
.
float32
)
restype_atom14_to_rigid_group
=
np
.
zeros
([
21
,
14
],
dtype
=
np
.
int
)
restype_atom14_mask
=
np
.
zeros
([
21
,
14
],
dtype
=
np
.
float32
)
restype_atom14_rigid_group_positions
=
np
.
zeros
([
21
,
14
,
3
],
dtype
=
np
.
float32
)
restype_rigid_group_default_frame
=
np
.
zeros
([
21
,
8
,
4
,
4
],
dtype
=
np
.
float32
)
def
_make_rigid_group_constants
():
"""Fill the arrays above."""
for
restype
,
restype_letter
in
enumerate
(
restypes
):
resname
=
restype_1to3
[
restype_letter
]
for
atomname
,
group_idx
,
atom_position
in
rigid_group_atom_positions
[
resname
]:
atomtype
=
atom_order
[
atomname
]
restype_atom37_to_rigid_group
[
restype
,
atomtype
]
=
group_idx
restype_atom37_mask
[
restype
,
atomtype
]
=
1
restype_atom37_rigid_group_positions
[
restype
,
atomtype
,
:
]
=
atom_position
atom14idx
=
restype_name_to_atom14_names
[
resname
].
index
(
atomname
)
restype_atom14_to_rigid_group
[
restype
,
atom14idx
]
=
group_idx
restype_atom14_mask
[
restype
,
atom14idx
]
=
1
restype_atom14_rigid_group_positions
[
restype
,
atom14idx
,
:
]
=
atom_position
for
restype
,
restype_letter
in
enumerate
(
restypes
):
resname
=
restype_1to3
[
restype_letter
]
atom_positions
=
{
name
:
np
.
array
(
pos
)
for
name
,
_
,
pos
in
rigid_group_atom_positions
[
resname
]
}
# backbone to backbone is the identity transform
restype_rigid_group_default_frame
[
restype
,
0
,
:,
:]
=
np
.
eye
(
4
)
# pre-omega-frame to backbone (currently dummy identity matrix)
restype_rigid_group_default_frame
[
restype
,
1
,
:,
:]
=
np
.
eye
(
4
)
# phi-frame to backbone
mat
=
_make_rigid_transformation_4x4
(
ex
=
atom_positions
[
"N"
]
-
atom_positions
[
"CA"
],
ey
=
np
.
array
([
1.0
,
0.0
,
0.0
]),
translation
=
atom_positions
[
"N"
],
)
restype_rigid_group_default_frame
[
restype
,
2
,
:,
:]
=
mat
# psi-frame to backbone
mat
=
_make_rigid_transformation_4x4
(
ex
=
atom_positions
[
"C"
]
-
atom_positions
[
"CA"
],
ey
=
atom_positions
[
"CA"
]
-
atom_positions
[
"N"
],
translation
=
atom_positions
[
"C"
],
)
restype_rigid_group_default_frame
[
restype
,
3
,
:,
:]
=
mat
# chi1-frame to backbone
if
chi_angles_mask
[
restype
][
0
]:
base_atom_names
=
chi_angles_atoms
[
resname
][
0
]
base_atom_positions
=
[
atom_positions
[
name
]
for
name
in
base_atom_names
]
mat
=
_make_rigid_transformation_4x4
(
ex
=
base_atom_positions
[
2
]
-
base_atom_positions
[
1
],
ey
=
base_atom_positions
[
0
]
-
base_atom_positions
[
1
],
translation
=
base_atom_positions
[
2
],
)
restype_rigid_group_default_frame
[
restype
,
4
,
:,
:]
=
mat
# chi2-frame to chi1-frame
# chi3-frame to chi2-frame
# chi4-frame to chi3-frame
# luckily all rotation axes for the next frame start at (0,0,0) of the
# previous frame
for
chi_idx
in
range
(
1
,
4
):
if
chi_angles_mask
[
restype
][
chi_idx
]:
axis_end_atom_name
=
chi_angles_atoms
[
resname
][
chi_idx
][
2
]
axis_end_atom_position
=
atom_positions
[
axis_end_atom_name
]
mat
=
_make_rigid_transformation_4x4
(
ex
=
axis_end_atom_position
,
ey
=
np
.
array
([
-
1.0
,
0.0
,
0.0
]),
translation
=
axis_end_atom_position
,
)
restype_rigid_group_default_frame
[
restype
,
4
+
chi_idx
,
:,
:
]
=
mat
_make_rigid_group_constants
()
def
make_atom14_dists_bounds
(
overlap_tolerance
=
1.5
,
bond_length_tolerance_factor
=
15
):
"""compute upper and lower bounds for bonds to assess violations."""
restype_atom14_bond_lower_bound
=
np
.
zeros
([
21
,
14
,
14
],
np
.
float32
)
restype_atom14_bond_upper_bound
=
np
.
zeros
([
21
,
14
,
14
],
np
.
float32
)
restype_atom14_bond_stddev
=
np
.
zeros
([
21
,
14
,
14
],
np
.
float32
)
residue_bonds
,
residue_virtual_bonds
,
_
=
load_stereo_chemical_props
()
for
restype
,
restype_letter
in
enumerate
(
restypes
):
resname
=
restype_1to3
[
restype_letter
]
atom_list
=
restype_name_to_atom14_names
[
resname
]
# create lower and upper bounds for clashes
for
atom1_idx
,
atom1_name
in
enumerate
(
atom_list
):
if
not
atom1_name
:
continue
atom1_radius
=
van_der_waals_radius
[
atom1_name
[
0
]]
for
atom2_idx
,
atom2_name
in
enumerate
(
atom_list
):
if
(
not
atom2_name
)
or
atom1_idx
==
atom2_idx
:
continue
atom2_radius
=
van_der_waals_radius
[
atom2_name
[
0
]]
lower
=
atom1_radius
+
atom2_radius
-
overlap_tolerance
upper
=
1e10
restype_atom14_bond_lower_bound
[
restype
,
atom1_idx
,
atom2_idx
]
=
lower
restype_atom14_bond_lower_bound
[
restype
,
atom2_idx
,
atom1_idx
]
=
lower
restype_atom14_bond_upper_bound
[
restype
,
atom1_idx
,
atom2_idx
]
=
upper
restype_atom14_bond_upper_bound
[
restype
,
atom2_idx
,
atom1_idx
]
=
upper
# overwrite lower and upper bounds for bonds and angles
for
b
in
residue_bonds
[
resname
]
+
residue_virtual_bonds
[
resname
]:
atom1_idx
=
atom_list
.
index
(
b
.
atom1_name
)
atom2_idx
=
atom_list
.
index
(
b
.
atom2_name
)
lower
=
b
.
length
-
bond_length_tolerance_factor
*
b
.
stddev
upper
=
b
.
length
+
bond_length_tolerance_factor
*
b
.
stddev
restype_atom14_bond_lower_bound
[
restype
,
atom1_idx
,
atom2_idx
]
=
lower
restype_atom14_bond_lower_bound
[
restype
,
atom2_idx
,
atom1_idx
]
=
lower
restype_atom14_bond_upper_bound
[
restype
,
atom1_idx
,
atom2_idx
]
=
upper
restype_atom14_bond_upper_bound
[
restype
,
atom2_idx
,
atom1_idx
]
=
upper
restype_atom14_bond_stddev
[
restype
,
atom1_idx
,
atom2_idx
]
=
b
.
stddev
restype_atom14_bond_stddev
[
restype
,
atom2_idx
,
atom1_idx
]
=
b
.
stddev
return
{
"lower_bound"
:
restype_atom14_bond_lower_bound
,
# shape (21,14,14)
"upper_bound"
:
restype_atom14_bond_upper_bound
,
# shape (21,14,14)
"stddev"
:
restype_atom14_bond_stddev
,
# shape (21,14,14)
}
restype_atom14_ambiguous_atoms
=
np
.
zeros
((
21
,
14
),
dtype
=
np
.
float32
)
restype_atom14_ambiguous_atoms_swap_idx
=
np
.
tile
(
np
.
arange
(
14
,
dtype
=
np
.
int
),
(
21
,
1
)
)
def
_make_atom14_ambiguity_feats
():
for
res
,
pairs
in
residue_atom_renaming_swaps
.
items
():
res_idx
=
restype_order
[
restype_3to1
[
res
]]
for
atom1
,
atom2
in
pairs
.
items
():
atom1_idx
=
restype_name_to_atom14_names
[
res
].
index
(
atom1
)
atom2_idx
=
restype_name_to_atom14_names
[
res
].
index
(
atom2
)
restype_atom14_ambiguous_atoms
[
res_idx
,
atom1_idx
]
=
1
restype_atom14_ambiguous_atoms
[
res_idx
,
atom2_idx
]
=
1
restype_atom14_ambiguous_atoms_swap_idx
[
res_idx
,
atom1_idx
]
=
atom2_idx
restype_atom14_ambiguous_atoms_swap_idx
[
res_idx
,
atom2_idx
]
=
atom1_idx
_make_atom14_ambiguity_feats
()
def
aatype_to_str_sequence
(
aatype
):
return
''
.
join
([
restypes_with_x
[
aatype
[
i
]]
for
i
in
range
(
len
(
aatype
))
])
### ALPHAFOLD MULTIMER STUFF ###
def
_make_chi_atom_indices
():
"""Returns atom indices needed to compute chi angles for all residue types.
Returns:
A tensor of shape [residue_types=21, chis=4, atoms=4]. The residue types are
in the order specified in residue_constants.restypes + unknown residue type
at the end. For chi angles which are not defined on the residue, the
positions indices are by default set to 0.
"""
chi_atom_indices
=
[]
for
residue_name
in
restypes
:
residue_name
=
restype_1to3
[
residue_name
]
residue_chi_angles
=
chi_angles_atoms
[
residue_name
]
atom_indices
=
[]
for
chi_angle
in
residue_chi_angles
:
atom_indices
.
append
(
[
atom_order
[
atom
]
for
atom
in
chi_angle
])
for
_
in
range
(
4
-
len
(
atom_indices
)):
atom_indices
.
append
([
0
,
0
,
0
,
0
])
# For chi angles not defined on the AA.
chi_atom_indices
.
append
(
atom_indices
)
chi_atom_indices
.
append
([[
0
,
0
,
0
,
0
]]
*
4
)
# For UNKNOWN residue.
return
np
.
array
(
chi_atom_indices
)
def
_make_renaming_matrices
():
"""Matrices to map atoms to symmetry partners in ambiguous case."""
# As the atom naming is ambiguous for 7 of the 20 amino acids, provide
# alternative groundtruth coordinates where the naming is swapped
restype_3
=
[
restype_1to3
[
res
]
for
res
in
restypes
]
restype_3
+=
[
'UNK'
]
# Matrices for renaming ambiguous atoms.
all_matrices
=
{
res
:
np
.
eye
(
14
,
dtype
=
np
.
float32
)
for
res
in
restype_3
}
for
resname
,
swap
in
residue_atom_renaming_swaps
.
items
():
correspondences
=
np
.
arange
(
14
)
for
source_atom_swap
,
target_atom_swap
in
swap
.
items
():
source_index
=
restype_name_to_atom14_names
[
resname
].
index
(
source_atom_swap
)
target_index
=
restype_name_to_atom14_names
[
resname
].
index
(
target_atom_swap
)
correspondences
[
source_index
]
=
target_index
correspondences
[
target_index
]
=
source_index
renaming_matrix
=
np
.
zeros
((
14
,
14
),
dtype
=
np
.
float32
)
for
index
,
correspondence
in
enumerate
(
correspondences
):
renaming_matrix
[
index
,
correspondence
]
=
1.
all_matrices
[
resname
]
=
renaming_matrix
.
astype
(
np
.
float32
)
renaming_matrices
=
np
.
stack
([
all_matrices
[
restype
]
for
restype
in
restype_3
])
return
renaming_matrices
def
_make_restype_atom37_mask
():
"""Mask of which atoms are present for which residue type in atom37."""
# create the corresponding mask
restype_atom37_mask
=
np
.
zeros
([
21
,
37
],
dtype
=
np
.
float32
)
for
restype
,
restype_letter
in
enumerate
(
restypes
):
restype_name
=
restype_1to3
[
restype_letter
]
atom_names
=
residue_atoms
[
restype_name
]
for
atom_name
in
atom_names
:
atom_type
=
atom_order
[
atom_name
]
restype_atom37_mask
[
restype
,
atom_type
]
=
1
return
restype_atom37_mask
def
_make_restype_atom14_mask
():
"""Mask of which atoms are present for which residue type in atom14."""
restype_atom14_mask
=
[]
for
rt
in
restypes
:
atom_names
=
restype_name_to_atom14_names
[
restype_1to3
[
rt
]]
restype_atom14_mask
.
append
([(
1.
if
name
else
0.
)
for
name
in
atom_names
])
restype_atom14_mask
.
append
([
0.
]
*
14
)
restype_atom14_mask
=
np
.
array
(
restype_atom14_mask
,
dtype
=
np
.
float32
)
return
restype_atom14_mask
def
_make_restype_atom37_to_atom14
():
"""Map from atom37 to atom14 per residue type."""
restype_atom37_to_atom14
=
[]
# mapping (restype, atom37) --> atom14
for
rt
in
restypes
:
atom_names
=
restype_name_to_atom14_names
[
restype_1to3
[
rt
]]
atom_name_to_idx14
=
{
name
:
i
for
i
,
name
in
enumerate
(
atom_names
)}
restype_atom37_to_atom14
.
append
([
(
atom_name_to_idx14
[
name
]
if
name
in
atom_name_to_idx14
else
0
)
for
name
in
atom_types
])
restype_atom37_to_atom14
.
append
([
0
]
*
37
)
restype_atom37_to_atom14
=
np
.
array
(
restype_atom37_to_atom14
,
dtype
=
np
.
int32
)
return
restype_atom37_to_atom14
def
_make_restype_atom14_to_atom37
():
"""Map from atom14 to atom37 per residue type."""
restype_atom14_to_atom37
=
[]
# mapping (restype, atom14) --> atom37
for
rt
in
restypes
:
atom_names
=
restype_name_to_atom14_names
[
restype_1to3
[
rt
]]
restype_atom14_to_atom37
.
append
([
(
atom_order
[
name
]
if
name
else
0
)
for
name
in
atom_names
])
# Add dummy mapping for restype 'UNK'
restype_atom14_to_atom37
.
append
([
0
]
*
14
)
restype_atom14_to_atom37
=
np
.
array
(
restype_atom14_to_atom37
,
dtype
=
np
.
int32
)
return
restype_atom14_to_atom37
def
_make_restype_atom14_is_ambiguous
():
"""Mask which atoms are ambiguous in atom14."""
# create an ambiguous atoms mask. shape: (21, 14)
restype_atom14_is_ambiguous
=
np
.
zeros
((
21
,
14
),
dtype
=
np
.
float32
)
for
resname
,
swap
in
residue_atom_renaming_swaps
.
items
():
for
atom_name1
,
atom_name2
in
swap
.
items
():
restype
=
restype_order
[
restype_3to1
[
resname
]]
atom_idx1
=
restype_name_to_atom14_names
[
resname
].
index
(
atom_name1
)
atom_idx2
=
restype_name_to_atom14_names
[
resname
].
index
(
atom_name2
)
restype_atom14_is_ambiguous
[
restype
,
atom_idx1
]
=
1
restype_atom14_is_ambiguous
[
restype
,
atom_idx2
]
=
1
return
restype_atom14_is_ambiguous
def
_make_restype_rigidgroup_base_atom37_idx
():
"""Create Map from rigidgroups to atom37 indices."""
# Create an array with the atom names.
# shape (num_restypes, num_rigidgroups, 3_atoms): (21, 8, 3)
base_atom_names
=
np
.
full
([
21
,
8
,
3
],
''
,
dtype
=
object
)
# 0: backbone frame
base_atom_names
[:,
0
,
:]
=
[
'C'
,
'CA'
,
'N'
]
# 3: 'psi-group'
base_atom_names
[:,
3
,
:]
=
[
'CA'
,
'C'
,
'O'
]
# 4,5,6,7: 'chi1,2,3,4-group'
for
restype
,
restype_letter
in
enumerate
(
restypes
):
resname
=
restype_1to3
[
restype_letter
]
for
chi_idx
in
range
(
4
):
if
chi_angles_mask
[
restype
][
chi_idx
]:
atom_names
=
chi_angles_atoms
[
resname
][
chi_idx
]
base_atom_names
[
restype
,
chi_idx
+
4
,
:]
=
atom_names
[
1
:]
# Translate atom names into atom37 indices.
lookuptable
=
atom_order
.
copy
()
lookuptable
[
''
]
=
0
restype_rigidgroup_base_atom37_idx
=
np
.
vectorize
(
lambda
x
:
lookuptable
[
x
])(
base_atom_names
)
return
restype_rigidgroup_base_atom37_idx
CHI_ATOM_INDICES
=
_make_chi_atom_indices
()
RENAMING_MATRICES
=
_make_renaming_matrices
()
RESTYPE_ATOM14_TO_ATOM37
=
_make_restype_atom14_to_atom37
()
RESTYPE_ATOM37_TO_ATOM14
=
_make_restype_atom37_to_atom14
()
RESTYPE_ATOM37_MASK
=
_make_restype_atom37_mask
()
RESTYPE_ATOM14_MASK
=
_make_restype_atom14_mask
()
RESTYPE_ATOM14_IS_AMBIGUOUS
=
_make_restype_atom14_is_ambiguous
()
RESTYPE_RIGIDGROUP_BASE_ATOM37_IDX
=
_make_restype_rigidgroup_base_atom37_idx
()
# Create mask for existing rigid groups.
RESTYPE_RIGIDGROUP_MASK
=
np
.
zeros
([
21
,
8
],
dtype
=
np
.
float32
)
RESTYPE_RIGIDGROUP_MASK
[:,
0
]
=
1
RESTYPE_RIGIDGROUP_MASK
[:,
3
]
=
1
RESTYPE_RIGIDGROUP_MASK
[:
20
,
4
:]
=
chi_angles_mask
fastfold/utils/all_atom_multimer.py
View file @
4693058b
...
@@ -18,7 +18,12 @@ from typing import Dict, Text, Tuple
...
@@ -18,7 +18,12 @@ from typing import Dict, Text, Tuple
import
torch
import
torch
from
fastfold.np
import
residue_constants
as
rc
from
fastfold.common
import
residue_const
ants
as
rc
from
fastfold.utils
import
geometry
,
tensor_utils
from
fastfold.utils
import
geometry
,
tensor_utils
import
numpy
as
np
import
numpy
as
np
...
...
inference.py
View file @
4693058b
...
@@ -142,7 +142,6 @@ def main(args):
...
@@ -142,7 +142,6 @@ def main(args):
def
inference_multimer_model
(
args
):
def
inference_multimer_model
(
args
):
print
(
"running in multimer mode..."
)
print
(
"running in multimer mode..."
)
config
=
model_config
(
args
.
model_name
)
config
=
model_config
(
args
.
model_name
)
# feature_dict = pickle.load(open("/home/lcmql/data/features_pdb1o5d.pkl", "rb"))
predict_max_templates
=
4
predict_max_templates
=
4
...
@@ -235,11 +234,55 @@ def inference_multimer_model(args):
...
@@ -235,11 +234,55 @@ def inference_multimer_model(args):
feature_dict
=
data_processor
.
process_fasta
(
feature_dict
=
data_processor
.
process_fasta
(
fasta_path
=
fasta_path
,
alignment_dir
=
local_alignment_dir
fasta_path
=
fasta_path
,
alignment_dir
=
local_alignment_dir
)
)
# feature_dict = pickle.load(open("/home/lcmql/data/features_pdb1o5d.pkl", "rb"))
processed_feature_dict
=
feature_processor
.
process_features
(
processed_feature_dict
=
feature_processor
.
process_features
(
feature_dict
,
mode
=
'predict'
,
is_multimer
=
True
,
feature_dict
,
mode
=
'predict'
,
is_multimer
=
True
,
)
)
batch
=
processed_feature_dict
manager
=
mp
.
Manager
()
result_q
=
manager
.
Queue
()
torch
.
multiprocessing
.
spawn
(
inference_model
,
nprocs
=
args
.
gpus
,
args
=
(
args
.
gpus
,
result_q
,
batch
,
args
))
out
=
result_q
.
get
()
# Toss out the recycling dimensions --- we don't need them anymore
batch
=
tensor_tree_map
(
lambda
x
:
np
.
array
(
x
[...,
-
1
].
cpu
()),
batch
)
plddt
=
out
[
"plddt"
]
mean_plddt
=
np
.
mean
(
plddt
)
plddt_b_factors
=
np
.
repeat
(
plddt
[...,
None
],
residue_constants
.
atom_type_num
,
axis
=-
1
)
unrelaxed_protein
=
protein
.
from_prediction
(
features
=
batch
,
result
=
out
,
b_factors
=
plddt_b_factors
)
# Save the unrelaxed PDB.
unrelaxed_output_path
=
os
.
path
.
join
(
args
.
output_dir
,
f
'
{
tag
}
_
{
args
.
model_name
}
_unrelaxed.pdb'
)
with
open
(
unrelaxed_output_path
,
'w'
)
as
f
:
f
.
write
(
protein
.
to_pdb
(
unrelaxed_protein
))
amber_relaxer
=
relax
.
AmberRelaxation
(
use_gpu
=
True
,
**
config
.
relax
,
)
# Relax the prediction.
t
=
time
.
perf_counter
()
relaxed_pdb_str
,
_
,
_
=
amber_relaxer
.
process
(
prot
=
unrelaxed_protein
)
print
(
f
"Relaxation time:
{
time
.
perf_counter
()
-
t
}
"
)
# Save the relaxed PDB.
relaxed_output_path
=
os
.
path
.
join
(
args
.
output_dir
,
f
'
{
tag
}
_
{
args
.
model_name
}
_relaxed.pdb'
)
with
open
(
relaxed_output_path
,
'w'
)
as
f
:
f
.
write
(
relaxed_pdb_str
)
def
inference_monomer_model
(
args
):
def
inference_monomer_model
(
args
):
print
(
"running in monomer mode..."
)
print
(
"running in monomer mode..."
)
config
=
model_config
(
args
.
model_name
)
config
=
model_config
(
args
.
model_name
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment