Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FAST-RNNT
Commits
12d3b03d
Commit
12d3b03d
authored
Jun 30, 2021
by
Daniel Povey
Browse files
Fix..
parent
6fbcae3e
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
18 additions
and
34 deletions
+18
-34
torch_integrated_conv/__init__.py
torch_integrated_conv/__init__.py
+1
-1
torch_integrated_conv/integrated_conv.py
torch_integrated_conv/integrated_conv.py
+1
-1
torch_integrated_conv/integrated_conv_cuda_kernel.cu
torch_integrated_conv/integrated_conv_cuda_kernel.cu
+16
-32
No files found.
torch_integrated_conv/__init__.py
View file @
12d3b03d
from
.
discounted_cumsum
import
discounted_cumsum_left
,
discounted_cumsum_right
from
.
integrated_conv
import
integrated_conv
torch_integrated_conv/integrated_conv.py
View file @
12d3b03d
...
...
@@ -126,5 +126,5 @@ def integrated_conv(input, pos_add, pos_mul):
return
integrated_conv
(
input
.
unsqueeze
(
-
2
),
pos_add
.
unsqueeze
(
-
2
),
pos_mul
.
unsqueeze
(
-
2
)).
squeeze
(
-
2
)
assert
input
.
ndim
==
4
and
pos_add
.
ndim
==
3
and
pos_mul
.
ndim
==
3
assert
input
.
dim
[
1
]
//
2
==
pos_add
.
dim
[
0
]
==
pos_mul
.
dim
[
0
]
assert
input
.
shape
[
1
]
//
2
==
pos_add
.
shape
[
0
]
==
pos_mul
.
shape
[
0
]
return
IntegratedConvFunction
.
apply
(
input
,
pos_add
,
pos_mul
)
torch_integrated_conv/integrated_conv_cuda_kernel.cu
View file @
12d3b03d
#include <torch/extension.h>
#include <c10/cuda/CUDAStream.h> // for getCurrentCUDAStream()
#include <cooperative_groups.h>
template
<
typename
scalar_t
,
typename
group_t
>
__device__
int
reduce_sum
(
group_t
g
,
scalar_t
*
temp
,
scalar_t
val
)
{
int
lane
=
g
.
thread_rank
();
// Each iteration halves the number of active threads
// Each thread adds its partial sum[i] to sum[lane+i]
#pragma unroll
for
(
int
i
=
g
.
size
()
/
2
;
i
>
0
;
i
/=
2
)
{
temp
[
lane
]
=
val
;
g
.
sync
();
// wait for all threads to store
if
(
lane
<
i
)
val
+=
temp
[
lane
+
i
];
g
.
sync
();
// wait for all threads to load
}
return
val
;
// note: only thread 0 will return full sum
}
/*
Forward of integrated_conv. Each thread group handles a single channel
(equal to blockIdx.x), and loops over patches of the output.
...
...
@@ -66,12 +46,12 @@ void integrated_conv_kernel(
torch
::
PackedTensorAccessor32
<
scalar_t
,
4
>
input
,
// N, 2*C, H, W
torch
::
PackedTensorAccessor32
<
scalar_t
,
3
>
pos_add
,
// C, kH, kW
torch
::
PackedTensorAccessor32
<
scalar_t
,
3
>
pos_mul
,
// C, kH, kW
torch
::
PackedTensorAcessor32
<
scalar_t
,
4
>
output
,
// N, C, H, W
torch
::
PackedTensorAc
c
essor32
<
scalar_t
,
4
>
output
,
// N, C, H, W
int
opatchH
,
// output-patch height,
int
opatchW
// output-patch width
)
{
const
int
H
=
input
.
size
(
2
),
W
=
input
.
size
(
3
)
W
=
input
.
size
(
3
)
,
kH
=
pos_add
.
size
(
1
),
kW
=
pos_add
.
size
(
2
),
npatchH
=
(
H
+
opatchH
-
1
)
/
opatchH
,
// num patches in vertical dim
...
...
@@ -84,16 +64,17 @@ void integrated_conv_kernel(
// exact number of channels.
const
int
ipatchH
=
opatchH
+
kH
-
1
,
ipatchW
=
i
patchW
+
kW
-
1
,
ipatchW
=
o
patchW
+
kW
-
1
,
ipatch_size
=
ipatchH
*
ipatchW
,
opatch_size
=
opatchH
*
opatchW
;
// `extern_buf` is general-purpose shared memory, which we'll divide between
// pos_add, pos_mul and src_img_buf to be shared between the src image size
// (ipatch_size) and the number of threads (blockDim.x)
__shared__
scalar_t
buf
[
buffer_dim
];
__shared__
scalar_t
// these are pointers to __shared__ memory; the compiler should
// be able to figure this out.
scalar_t
*
pos_add_buf
=
(
scalar_t
*
)
extern_buf
,
// pos_add positional-encoding / kernel parameters,
// indexed [kh*kW + kw] where kh and kw are vertical
// and horizontal positions in the kernel.
...
...
@@ -106,10 +87,12 @@ void integrated_conv_kernel(
// image.
threads_per_opixel
=
blockDim
.
x
/
opatch_size
;
int
threads_per_opixel
=
blockDim
.
x
/
opatch_size
;
assert
(
blockDim
.
x
==
opatch_size
*
threads_per_opixel
);
auto
tile
=
cooperative_groups
::
tiled_partition
(
g
,
threads_per_opixel
);
auto
tile
=
cooperative_groups
::
tiled_partition
(
cooperative_groups
::
this_thread_block
(),
threads_per_opixel
);
// pos_in_patch will be interpreted as h_in_patch * opatchW + w_in_patch.
int
pos_in_patch
=
threadIdx
.
x
/
threads_per_opixel
;
...
...
@@ -173,6 +156,7 @@ void integrated_conv_kernel(
// subsystem handles this well enough that we can just ignore the issue
// rather than try to optimize it.
// https://forums.developer.nvidia.com/t/accessing-same-global-memory-address-within-warps/66574
int
C
=
input
.
size
(
1
)
/
2
;
dest_val
=
input
[
n
][
c
+
C
][
h
][
w
];
// else 0.
}
...
...
@@ -190,8 +174,8 @@ void integrated_conv_kernel(
// have a negative sign on the h and w indexes in the kernel.
// Also note: we already took care of padding and the associated
// offsets of -(kH / 2) and -(kW / 2).
int
h_in_src_patch
=
h
_in_patch
+
h_in_kernel
,
w_in_src_patch
=
w
_in_patch
+
w_in_kernel
;
int
h_in_src_patch
=
(
pos
_in_patch
/
opatchW
)
+
h_in_kernel
,
w_in_src_patch
=
(
pos
_in_patch
%
opatchW
)
+
w_in_kernel
;
scalar_t
src_val
=
src_img_buf
[
h_in_src_patch
*
ipatchW
+
w_in_src_patch
],
pos_add_val
=
pos_add_buf
[
pos_in_kernel
];
scalar_t
relu
=
(
src_val
+
dest_val
+
pos_add_val
);
...
...
@@ -281,7 +265,7 @@ torch::Tensor integrated_conv_cuda(torch::Tensor input,
int
threads_per_block
=
patchH
*
patchW
*
threads_per_opixel
;
int
buffer_numel
=
2
*
(
kH
*
kW
)
+
max
<
int
>
(
threads_per_block
,
int
buffer_numel
=
2
*
(
kH
*
kW
)
+
std
::
max
<
int
>
(
threads_per_block
,
input_patch_size
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment