#!/usr/bin/env python3 -u # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import numpy as np import torch from fairseq import data, options, progress_bar, tasks, utils from fairseq.meters import StopwatchMeter, TimeMeter from fairseq.sequence_scorer import SequenceScorer def main(args): assert args.path is not None, '--path required for evaluation!' args.tokens_per_sample = getattr(args, 'tokens_per_sample', 1024) print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset)))) # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, _ = utils.load_ensemble_for_inference(args.path.split(':'), task) # Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer) for model in models: model.make_generation_fast_() if args.fp16: model.half() assert len(models) > 0 itr = data.EpochBatchIterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens or 36000, max_sentences=args.max_sentences, max_positions=models[0].max_positions(), num_shards=args.num_shards, shard_id=args.shard_id, ignore_invalid_inputs=True, ).next_epoch_itr(shuffle=False) gen_timer = StopwatchMeter() scorer = SequenceScorer(models, task.target_dictionary) if use_cuda: scorer.cuda() score_sum = 0. count = 0 if args.remove_bpe is not None: bpe_cont = args.remove_bpe.rstrip() bpe_toks = set(i for i in range(len(task.dictionary)) if task.dictionary[i].endswith(bpe_cont)) bpe_len = len(bpe_cont) else: bpe_toks = None bpe_len = 0 with progress_bar.build_progress_bar(args, itr) as t: results = scorer.score_batched_itr(t, cuda=use_cuda, timer=gen_timer) wps_meter = TimeMeter() for _, src_tokens, __, hypos in results: for hypo in hypos: pos_scores = hypo['positional_scores'] skipped_toks = 0 if bpe_toks is not None: for i in range(len(hypo['tokens']) - 1): if hypo['tokens'][i].item() in bpe_toks: skipped_toks += 1 pos_scores[i + 1] += pos_scores[i] pos_scores[i] = 0 inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf')) if inf_scores.any(): print('| Skipping tokens with inf scores:', task.target_dictionary.string(hypo['tokens'][inf_scores.nonzero()])) pos_scores = pos_scores[(~inf_scores).nonzero()] score_sum += pos_scores.sum() count += pos_scores.numel() - skipped_toks if args.output_word_probs: w = '' word_prob = [] for i in range(len(hypo['tokens'])): w_ind = hypo['tokens'][i].item() w += task.dictionary[w_ind] if bpe_toks is not None and w_ind in bpe_toks: w = w[:-bpe_len] else: word_prob.append((w, pos_scores[i].item())) w = '' print('\t'.join('{} [{:2f}]'.format(x[0], x[1]) for x in word_prob)) wps_meter.update(src_tokens.size(0)) t.log({'wps': round(wps_meter.avg)}) avg_nll_loss = -score_sum / count print('| Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(gen_timer.n, gen_timer.sum, 1. / gen_timer.avg)) print('| Loss: {:.4f}, Perplexity: {:.2f}'.format(avg_nll_loss, np.exp(avg_nll_loss))) if __name__ == '__main__': parser = options.get_eval_lm_parser() args = options.parse_args_and_arch(parser) main(args)