# RoBERTa: A Robustly Optimized BERT Pretraining Approach https://arxiv.org/abs/1907.11692 ## Introduction **RoBERTa** iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data. See the associated paper for more details. ## Pre-trained models Model | Description | # params | Download ---|---|---|--- `roberta.base` | RoBERTa using the BERT-base architecture | 125M | [roberta.base.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz) `roberta.large` | RoBERTa using the BERT-large architecture | 355M | [roberta.large.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz) `roberta.large.mnli` | `roberta.large` finetuned on MNLI | 355M | [roberta.large.mnli.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.mnli.tar.gz) ## Results ##### Results on GLUE tasks (dev set, single model, single-task finetuning) Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B ---|---|---|---|---|---|---|---|--- `roberta.base` | 87.6 | 92.8 | 91.9 | 78.7 | 94.8 | 90.2 | 63.6 | 91.2 `roberta.large` | 90.2 | 94.7 | 92.2 | 86.6 | 96.4 | 90.9 | 68.0 | 92.4 `roberta.large.mnli` | 90.2 | - | - | - | - | - | - | - ##### Results on SQuAD (dev set) Model | SQuAD 1.1 EM/F1 | SQuAD 2.0 EM/F1 ---|---|--- `roberta.large` | 88.9/94.6 | 86.5/89.4 ##### Results on Reading Comprehension (RACE, test set) Model | Accuracy | Middle | High ---|---|---|--- `roberta.large` | 83.2 | 86.5 | 81.3 ## Example usage ##### Load RoBERTa from torch.hub (PyTorch >= 1.1): ``` >>> import torch >>> roberta = torch.hub.load('pytorch/fairseq', 'roberta.large') >>> roberta.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Load RoBERTa (for PyTorch 1.0): ``` $ wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz $ tar -xzvf roberta.large.tar.gz >>> from fairseq.models.roberta import RobertaModel >>> roberta = RobertaModel.from_pretrained('/path/to/roberta.large') >>> roberta.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Apply Byte-Pair Encoding (BPE) to input text: ``` >>> tokens = roberta.encode('Hello world!') >>> tokens tensor([ 0, 31414, 232, 328, 2]) ``` ##### Extract features from RoBERTa: ``` >>> last_layer_features = roberta.extract_features(tokens) >>> last_layer_features.size() torch.Size([1, 5, 1024]) >>> all_layers = roberta.extract_features(tokens, return_all_hiddens=True) >>> len(all_layers) 25 >>> torch.all(all_layers[-1] == last_layer_features) tensor(1, dtype=torch.uint8) ``` ##### Use RoBERTa for sentence-pair classification tasks: ``` >>> roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli') # already finetuned >>> roberta.eval() # disable dropout for evaluation >>> tokens = roberta.encode( ... 'Roberta is a heavily optimized version of BERT.', ... 'Roberta is not very optimized.' ... ) >>> roberta.predict('mnli', tokens).argmax() tensor(0) # contradiction >>> tokens = roberta.encode( ... 'Roberta is a heavily optimized version of BERT.', ... 'Roberta is based on BERT.' ... ) >>> roberta.predict('mnli', tokens).argmax() tensor(2) # entailment ``` ##### Register a new (randomly initialized) classification head: ``` >>> roberta.register_classification_head('new_task', num_classes=3) >>> roberta.predict('new_task', tokens) tensor([[-1.1050, -1.0672, -1.1245]], grad_fn=) ``` ##### Using the GPU: ``` >>> roberta.cuda() >>> roberta.predict('new_task', tokens) tensor([[-1.1050, -1.0672, -1.1245]], device='cuda:0', grad_fn=) ``` ##### Evaluating the `roberta.large.mnli` model Example python code snippet to evaluate accuracy on the MNLI dev_matched set. ``` label_map = {0: 'contradiction', 1: 'neutral', 2: 'entailment'} ncorrect, nsamples = 0, 0 roberta.cuda() roberta.eval() with open('glue_data/MNLI/dev_matched.tsv') as fin: fin.readline() for index, line in enumerate(fin): tokens = line.strip().split('\t') sent1, sent2, target = tokens[8], tokens[9], tokens[-1] tokens = roberta.encode(sent1, sent2) prediction = roberta.predict('mnli', tokens).argmax().item() prediction_label = label_map[prediction] ncorrect += int(prediction_label == target) nsamples += 1 print('| Accuracy: ', float(ncorrect)/float(nsamples)) # Expected output: 0.9060 ``` ## Finetuning on GLUE tasks A more detailed tutorial is coming soon. ## Pretraining using your own data You can use the [`masked_lm` task](/fairseq/tasks/masked_lm.py) to pretrain RoBERTa from scratch, or to continue pretraining RoBERTa starting from one of the released checkpoints. Data should be preprocessed following the [language modeling example](/examples/language_model). A more detailed tutorial is coming soon. ## Citation ```bibtex @article{liu2019roberta, title = {RoBERTa: A Robustly Optimized BERT Pretraining Approach}, author = {Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettlemoyer and Veselin Stoyanov}, journal={arXiv preprint arXiv:1907.11692}, year = {2019}, } ```