# Neural Language Modeling ## Pre-trained models Description | Parameters | Dataset | Model and Test set(s) ---|---:|---|--- Adaptive Inputs
([Baevski and Auli, 2018](https://arxiv.org/abs/1809.10853)) | 1026M | [Google Billion Words](https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_gbw_huge.tar.bz2) Adaptive Inputs
([Baevski and Auli, 2018](https://arxiv.org/abs/1809.10853)) | 247M | [WikiText-103](https://einstein.ai/research/the-wikitext-long-term-dependency-language-modeling-dataset) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/adaptive_lm_wiki103.tar.bz2) ## Example usage Interactive generation via PyTorch Hub: ``` >>> import torch >>> torch.hub.list('pytorch/fairseq') [..., 'transformer_lm.gbw.adaptive_huge', 'transformer_lm.wiki103.adaptive', ...] >>> lm = torch.hub.load( ... 'pytorch/fairseq', ... 'transformer_lm.wiki103.adaptive', ... data_name_or_path='./data-bin', ... tokenizer='moses', ... no_escape=True, ... beam=1, ... sampling=True, ... sampling_topk=10, ... temperature=0.8, ... ) >>> lm.generate('Barack Obama', verbose=True) ``` Available models are listed in the ``hub_models()`` method in each model file, for example: [transformer_lm.py](https://github.com/pytorch/fairseq/blob/master/fairseq/models/transformer_lm.py). ## Training a new model with the CLI tools These scripts provide an example of pre-processing data for the Language Modeling task. ### prepare-wikitext-103.sh Provides an example of pre-processing for [WikiText-103 language modeling task](https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/): Example usage: Prepare data: ``` $ cd examples/language_model/ $ bash prepare-wikitext-103.sh $ cd ../.. # Binarize the dataset: $ TEXT=examples/language_model/wikitext-103 $ fairseq-preprocess --only-source \ --trainpref $TEXT/wiki.train.tokens --validpref $TEXT/wiki.valid.tokens --testpref $TEXT/wiki.test.tokens \ --destdir data-bin/wikitext-103 ``` Train a transformer language model with adaptive inputs ([Baevski and Auli (2018): Adaptive Input Representations for Neural Language Modeling](transformer_lm/README.md)): ``` # If it runs out of memory, try to reduce max-tokens and tokens-per-sample $ mkdir -p checkpoints/transformer_wikitext-103 $ fairseq-train --task language_modeling data-bin/wikitext-103 \ --save-dir checkpoints/transformer_wikitext-103 --arch transformer_lm_wiki103 \ --max-update 286000 --max-lr 1.0 --t-mult 2 --lr-period-updates 270000 --lr-scheduler cosine --lr-shrink 0.75 \ --warmup-updates 16000 --warmup-init-lr 1e-07 --min-lr 1e-09 --optimizer nag --lr 0.0001 --clip-norm 0.1 \ --criterion adaptive_loss --max-tokens 3072 --update-freq 3 --tokens-per-sample 3072 --seed 1 \ --sample-break-mode none --skip-invalid-size-inputs-valid-test --ddp-backend=no_c10d # Evaluate: $ fairseq-eval-lm data-bin/wikitext-103 --path 'checkpoints/transformer_wiki103/checkpoint_best.pt' \ --sample-break-mode complete --max-tokens 3072 --context-window 2560 --softmax-batch 1024 ``` Train a convolutional language model ([Dauphin et al. (2017): Language Modeling with Gated Convolutional Networks](conv_lm/README.md)): ``` # If it runs out of memory, try to reduce max-tokens and tokens-per-sample $ mkdir -p checkpoints/fconv_wikitext-103 $ fairseq-train --task language_modeling data-bin/wikitext-103 \ --save-dir checkpoints/fconv_wikitext-103 \ --max-epoch 35 --arch fconv_lm_dauphin_wikitext103 --optimizer nag \ --lr 1.0 --lr-scheduler reduce_lr_on_plateau --lr-shrink 0.5 \ --clip-norm 0.1 --dropout 0.2 --weight-decay 5e-06 --criterion adaptive_loss \ --adaptive-softmax-cutoff 10000,20000,200000 --max-tokens 1024 --tokens-per-sample 1024 \ --ddp-backend=no_c10d # Evaluate: $ fairseq-eval-lm data-bin/wikitext-103 --path 'checkpoints/fconv_wiki103/checkpoint_best.pt' ```