# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import csv import io import logging import math import os import os.path as op import sys import tqdm from dump_hubert_feature import HubertFeatureReader from fairseq.data.audio.audio_utils import get_waveform from fairseq.data.audio.speech_to_text_dataset import ( read_from_uncompressed_zip, ) from npy_append_array import NpyAppendArray logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("dump_hubert_feature_s2t") class HubertFeatureReaderS2T(HubertFeatureReader): def read_audio(self, path, ref_len=None): path, *extra = path.split(":") assert len(extra) == 2 assert path.endswith(".zip") data = read_from_uncompressed_zip(path, int(extra[0]), int(extra[1])) f = io.BytesIO(data) wav, sr = get_waveform(f) assert sr == self.task.cfg.sample_rate, sr if wav.ndim == 2: wav = wav.mean(-1) assert wav.ndim == 1, wav.ndim if ref_len is not None and abs(ref_len - len(wav)) > 160: logging.warning(f"ref {ref_len} != read {len(wav)} ({path})") return wav def get_path_iterator(root, tsv, nshard, rank): with open(tsv) as f: reader = csv.DictReader( f, delimiter="\t", quotechar=None, doublequote=False, lineterminator="\n", quoting=csv.QUOTE_NONE, ) subpaths = [op.join(root, e["audio"]) for e in reader] tot = len(subpaths) shard_size = math.ceil(tot / nshard) start, end = rank * shard_size, min((rank + 1) * shard_size, tot) assert start < end, "start={start}, end={end}" logger.info( f"rank {rank} of {nshard}, process {end-start} " f"({start}-{end}) out of {tot}" ) subpaths = subpaths[start:end] def iterate(): for subpath in subpaths: yield op.join(root, subpath) return iterate, len(subpaths) def dump_feature( root, tsv_path, ckpt_path, layer, nshard, rank, feat_dir, feat_name, max_chunk, ): reader = HubertFeatureReaderS2T(ckpt_path, layer, max_chunk) generator, num = get_path_iterator(root, tsv_path, nshard, rank) iterator = generator() feat_path = f"{feat_dir}/{feat_name}_{rank}_{nshard}.npy" leng_path = f"{feat_dir}/{feat_name}_{rank}_{nshard}.len" os.makedirs(feat_dir, exist_ok=True) if op.exists(feat_path): os.remove(feat_path) feat_f = NpyAppendArray(feat_path) with open(leng_path, "w") as leng_f: for path in tqdm.tqdm(iterator, total=num): feat = reader.get_feats(path) feat_f.append(feat.cpu().numpy()) leng_f.write(f"{len(feat)}\n") logger.info("finished successfully") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("root") parser.add_argument("tsv_path") parser.add_argument("ckpt_path") parser.add_argument("layer", type=int) parser.add_argument("nshard", type=int) parser.add_argument("rank", type=int) parser.add_argument("feat_dir") parser.add_argument("feat_name") parser.add_argument("--max_chunk", type=int, default=1600000) args = parser.parse_args() logger.info(args) dump_feature(**vars(args))