#!/usr/bin/env python3 -u # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. """ Evaluate the perplexity of a trained language model. """ import numpy as np import torch from fairseq import options, progress_bar, tasks, utils from fairseq.meters import StopwatchMeter, TimeMeter from fairseq.sequence_scorer import SequenceScorer from fairseq.utils import import_user_module class WordStat(object): def __init__(self, word, is_bpe): self.word = word self.is_bpe = is_bpe self.log_prob = 0 self.next_word_prob = 0 self.count = 0 self.missing_next_words = 0 def add(self, log_prob, next_word_prob): """ increments counters for the sum of log probs of current word and next word (given context ending at current word). Since the next word might be at the end of the example, or it might be not counted because it is not an ending subword unit, also keeps track of how many of those we have seen """ if next_word_prob is not None: self.next_word_prob += next_word_prob else: self.missing_next_words += 1 self.log_prob += log_prob self.count += 1 def __str__(self): return '{}\t{}\t{}\t{}\t{}\t{}'.format(self.word, self.count, self.log_prob, self.is_bpe, self.next_word_prob, self.count - self.missing_next_words) def main(parsed_args): assert parsed_args.path is not None, '--path required for evaluation!' import_user_module(parsed_args) print(parsed_args) use_cuda = torch.cuda.is_available() and not parsed_args.cpu task = tasks.setup_task(parsed_args) # Load ensemble print('| loading model(s) from {}'.format(parsed_args.path)) models, args = utils.load_ensemble_for_inference( parsed_args.path.split(':'), task, model_arg_overrides=eval(parsed_args.model_overrides), ) for arg in vars(parsed_args).keys(): if arg not in {'self_target', 'future_target', 'past_target', 'tokens_per_sample', 'output_size_dictionary'}: setattr(args, arg, getattr(parsed_args, arg)) task = tasks.setup_task(args) # Load dataset splits task.load_dataset(args.gen_subset) print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset)))) # Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer) for model in models: model.make_generation_fast_() if args.fp16: model.half() if use_cuda: model.cuda() assert len(models) > 0 print('num. model params: {}'.format(sum(p.numel() for p in models[0].parameters()))) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens or 36000, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions(*[ model.max_positions() for model in models ]), ignore_invalid_inputs=True, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) gen_timer = StopwatchMeter() scorer = SequenceScorer(task.target_dictionary) score_sum = 0. count = 0 if args.remove_bpe is not None: bpe_cont = args.remove_bpe.rstrip() bpe_toks = set(i for i in range(len(task.dictionary)) if task.dictionary[i].endswith(bpe_cont)) bpe_len = len(bpe_cont) else: bpe_toks = None bpe_len = 0 word_stats = dict() with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() for sample in t: sample = utils.move_to_cuda(sample) if use_cuda else sample if 'net_input' not in sample: continue gen_timer.start() hypos = scorer.generate(models, sample) gen_timer.stop(sample['ntokens']) for hypos_i in hypos: hypo = hypos_i[0] pos_scores = hypo['positional_scores'] skipped_toks = 0 if bpe_toks is not None: for i in range(len(hypo['tokens']) - 1): if hypo['tokens'][i].item() in bpe_toks: skipped_toks += 1 pos_scores[i + 1] += pos_scores[i] pos_scores[i] = 0 inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf')) if inf_scores.any(): print('| Skipping tokens with inf scores:', task.target_dictionary.string(hypo['tokens'][inf_scores.nonzero()])) pos_scores = pos_scores[(~inf_scores).nonzero()] score_sum += pos_scores.sum().cpu() count += pos_scores.numel() - skipped_toks if args.output_word_probs or args.output_word_stats: w = '' word_prob = [] is_bpe = False for i in range(len(hypo['tokens'])): w_ind = hypo['tokens'][i].item() w += task.dictionary[w_ind] if bpe_toks is not None and w_ind in bpe_toks: w = w[:-bpe_len] is_bpe = True else: word_prob.append((w, pos_scores[i].item())) next_prob = None ind = i + 1 while ind < len(hypo['tokens']): if pos_scores[ind].item() != 0: next_prob = pos_scores[ind] break ind += 1 word_stats.setdefault(w, WordStat(w, is_bpe)).add(pos_scores[i].item(), next_prob) is_bpe = False w = '' if args.output_word_probs: print('\t'.join('{} [{:2f}]'.format(x[0], x[1]) for x in word_prob)) wps_meter.update(sample['ntokens']) t.log({'wps': round(wps_meter.avg)}) avg_nll_loss = -score_sum / count print('| Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(gen_timer.n, gen_timer.sum, 1. / gen_timer.avg)) print('| Loss: {:.4f}, Perplexity: {:.2f}'.format(avg_nll_loss, np.exp(avg_nll_loss))) if args.output_word_stats: for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True): print(ws) def cli_main(): parser = options.get_eval_lm_parser() args = options.parse_args_and_arch(parser) main(args) if __name__ == '__main__': cli_main()