# WMT 19 This page provides pointers to the models of Facebook-FAIR's WMT'19 news translation task submission [(Ng et al., 2019)](https://arxiv.org/abs/1907.06616). ## Pre-trained models Description | Model ---|--- En->De Ensemble | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.bz2) De->En Ensemble | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.bz2) En->Ru Ensemble | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.bz2) Ru->En Ensemble | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.bz2) En LM | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.en.tar.bz2) De LM | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.de.tar.bz2) Ru LM | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/wmt19.ru.tar.bz2) ## Example usage (torch.hub) ``` >>> import torch >>> en2de = torch.hub.load( ... 'pytorch/fairseq', ... 'transformer.wmt19.en-de', ... checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt' ... tokenizer='moses', ... bpe='fastbpe', ... ) >>> en2de.generate("Machine learning is great!") 'Maschinelles Lernen ist großartig!' >>> de2en = torch.hub.load( ... 'pytorch/fairseq', ... 'transformer.wmt19.de-en', ... checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt' ... tokenizer='moses', ... bpe='fastbpe', ... ) >>> de2en.generate("Maschinelles Lernen ist großartig!") 'Machine learning is great!' >>> en2ru = torch.hub.load( ... 'pytorch/fairseq', ... 'transformer.wmt19.en-ru', ... checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt' ... tokenizer='moses', ... bpe='fastbpe', ... ) >>> en2ru.generate("Machine learning is great!") 'Машинное обучение - это здорово!' >>> ru2en = torch.hub.load( ... 'pytorch/fairseq', ... 'transformer.wmt19.ru-en', ... checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt' ... tokenizer='moses', ... bpe='fastbpe', ... ) >>> ru2en.generate("Машинное обучение - это здорово!") 'Machine learning is great!' >>> en_lm = torch.hub.load( ... 'pytorch.fairseq', ... 'transformer_lm.wmt19.en' ... tokenizer='moses', ... bpe='fastbpe', ... ) >>> en_lm.generate("Machine learning is") 'Machine learning is the future of computing, says Microsoft boss Satya Nadella ...' >>> de_lm = torch.hub.load( ... 'pytorch.fairseq', ... 'transformer_lm.wmt19.de' ... tokenizer='moses', ... bpe='fastbpe', ... ) >>> de_lm.generate("Maschinelles lernen ist") ''Maschinelles lernen ist das A und O (neues-deutschland.de) Die Arbeitsbedingungen für Lehrerinnen und Lehrer sind seit Jahren verbesserungswürdig ...' >>> ru_lm = torch.hub.load( ... 'pytorch.fairseq', ... 'transformer_lm.wmt19.ru' ... tokenizer='moses', ... bpe='fastbpe', ... ) >>> ru_lm.generate("машинное обучение это") 'машинное обучение это то, что мы называем "искусственным интеллектом".' ``` ## Citation ```bibtex @inproceedings{ng2019facebook}, title = {Facebook FAIR's WMT19 News Translation Task Submission}, author = {Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}, booktitle = {Proc. of WMT}, year = 2019, } ```