# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch import unittest from fairseq.modules import ConvTBC import torch.nn as nn from torch.autograd import Variable class TestConvTBC(unittest.TestCase): def test_convtbc(self): # ksz, in_channels, out_channels conv_tbc = ConvTBC(4, 5, kernel_size=3, padding=1) # out_channels, in_channels, ksz conv1d = nn.Conv1d(4, 5, kernel_size=3, padding=1) conv_tbc.weight.data.copy_(conv1d.weight.data.transpose(0, 2)) conv_tbc.bias.data.copy_(conv1d.bias.data) input_tbc = Variable(torch.randn(7, 2, 4), requires_grad=True) input1d = Variable(input_tbc.data.transpose(0, 1).transpose(1, 2), requires_grad=True) output_tbc = conv_tbc(input_tbc) output1d = conv1d(input1d) self.assertAlmostEqual(output_tbc.data.transpose(0, 1).transpose(1, 2), output1d.data) grad_tbc = torch.randn(output_tbc.size()) grad1d = grad_tbc.transpose(0, 1).transpose(1, 2).contiguous() output_tbc.backward(grad_tbc) output1d.backward(grad1d) self.assertAlmostEqual(conv_tbc.weight.grad.data.transpose(0, 2), conv1d.weight.grad.data) self.assertAlmostEqual(conv_tbc.bias.grad.data, conv1d.bias.grad.data) self.assertAlmostEqual(input_tbc.grad.data.transpose(0, 1).transpose(1, 2), input1d.grad.data) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) if __name__ == '__main__': unittest.main()