# CamemBERT: a French BERT ## Introduction CamemBERT is a pretrained language model trained on 138GB of French text based on RoBERTa. Also available in [github.com/huggingface/transformers](https://github.com/huggingface/transformers/). ## Pre-trained models Model | #params | vocab size | Download ---|---|---|--- `CamemBERT` | 110M | 32k | [camembert.v0.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/camembert.v0.tar.gz) ## Example usage ##### Load CamemBERT from torch.hub (PyTorch >= 1.1): ```python import torch camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Load CamemBERT (for PyTorch 1.0 or custom models): ```python # Download camembert model wget https://dl.fbaipublicfiles.com/fairseq/models/camembert.v0.tar.gz tar -xzvf camembert.v0.tar.gz # Load the model in fairseq from fairseq.models.roberta import CamembertModel camembert = CamembertModel.from_pretrained('/path/to/camembert.v0') camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks: ```python masked_line = 'Le camembert est :)' camembert.fill_mask(masked_line, topk=3) # [('Le camembert est délicieux :)', 0.4909118115901947, ' délicieux'), # ('Le camembert est excellent :)', 0.10556942224502563, ' excellent'), # ('Le camembert est succulent :)', 0.03453322499990463, ' succulent')] ``` ##### Extract features from Camembert: ```python # Extract the last layer's features line = "J'aime le camembert !" tokens = camembert.encode(line) last_layer_features = camembert.extract_features(tokens) assert last_layer_features.size() == torch.Size([1, 10, 768]) # Extract all layer's features (layer 0 is the embedding layer) all_layers = camembert.extract_features(tokens, return_all_hiddens=True) assert len(all_layers) == 13 assert torch.all(all_layers[-1] == last_layer_features) ```