#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # import sys import torch from torch.autograd import Variable from fairseq import data, options, tokenizer, utils from fairseq.sequence_generator import SequenceGenerator def main(): parser = options.get_parser('Generation') parser.add_argument('--path', metavar='FILE', required=True, action='append', help='path(s) to model file(s)') options.add_dataset_args(parser) options.add_generation_args(parser) args = parser.parse_args() print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load ensemble print('| loading model(s) from {}'.format(', '.join(args.path))) models, model_args = utils.load_ensemble_for_inference(args.path, data_dir=args.data) src_dict, dst_dict = models[0].src_dict, models[0].dst_dict print('| [{}] dictionary: {} types'.format(model_args.source_lang, len(src_dict))) print('| [{}] dictionary: {} types'.format(model_args.target_lang, len(dst_dict))) # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam) # Initialize generator translator = SequenceGenerator( models, beam_size=args.beam, stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized), len_penalty=args.lenpen, unk_penalty=args.unkpen) if use_cuda: translator.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) print('Type the input sentence and press return:') for src_str in sys.stdin: src_str = src_str.strip() src_tokens = tokenizer.Tokenizer.tokenize(src_str, src_dict, add_if_not_exist=False).long() if use_cuda: src_tokens = src_tokens.cuda() translations = translator.generate(Variable(src_tokens.view(1, -1))) hypos = translations[0] print('O\t{}'.format(src_str)) # Process top predictions for hypo in hypos[:min(len(hypos), args.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'].int().cpu(), align_dict=align_dict, dst_dict=dst_dict, remove_bpe=args.remove_bpe) print('A\t{}'.format(' '.join(map(str, alignment)))) print('H\t{}\t{}'.format(hypo['score'], hypo_str)) if __name__ == '__main__': main()