# Neural Language Modeling ## Pre-trained models Description | Dataset | Model | Test set(s) ---|---|---|--- Convolutional
([Dauphin et al., 2017](https://arxiv.org/abs/1612.08083)) | [Google Billion Words](https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/lm/gbw_fconv_lm.tar.bz2) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/gbw_test_lm.tar.bz2) Convolutional
([Dauphin et al., 2017](https://arxiv.org/abs/1612.08083)) | [WikiText-103](https://einstein.ai/research/the-wikitext-long-term-dependency-language-modeling-dataset) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wiki103_fconv_lm.tar.bz2) | [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wiki103_test_lm.tar.bz2) ## Example usage These scripts provide an example of pre-processing data for the Language Modeling task. ### prepare-wikitext-103.sh Provides an example of pre-processing for [WikiText-103 language modeling task](https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/): Example usage: ``` $ cd examples/language_model/ $ bash prepare-wikitext-103.sh $ cd ../.. # Binarize the dataset: $ TEXT=examples/language_model/wikitext-103 $ fairseq-preprocess --only-source \ --trainpref $TEXT/wiki.train.tokens --validpref $TEXT/wiki.valid.tokens --testpref $TEXT/wiki.test.tokens \ --destdir data-bin/wikitext-103 # Train the model: # If it runs out of memory, try to reduce max-tokens and max-target-positions $ mkdir -p checkpoints/wikitext-103 $ fairseq-train --task language_modeling data-bin/wikitext-103 \ --max-epoch 35 --arch fconv_lm_dauphin_wikitext103 --optimizer nag \ --lr 1.0 --lr-scheduler reduce_lr_on_plateau --lr-shrink 0.5 \ --clip-norm 0.1 --dropout 0.2 --weight-decay 5e-06 --criterion adaptive_loss \ --adaptive-softmax-cutoff 10000,20000,200000 --max-tokens 1024 --tokens-per-sample 1024 # Evaluate: $ fairseq-eval-lm data-bin/wikitext-103 --path 'checkpoints/wiki103/checkpoint_best.pt' ```