# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. # import unittest import torch from torch.autograd import Variable from fairseq import utils class TestUtils(unittest.TestCase): def test_convert_padding_direction(self): pad = 1 left_pad = torch.LongTensor([ [2, 3, 4, 5, 6], [1, 7, 8, 9, 10], [1, 1, 1, 11, 12], ]) right_pad = torch.LongTensor([ [2, 3, 4, 5, 6], [7, 8, 9, 10, 1], [11, 12, 1, 1, 1], ]) lengths = torch.LongTensor([5, 4, 2]) self.assertAlmostEqual( right_pad, utils.convert_padding_direction( left_pad, lengths, pad, left_to_right=True, ), ) self.assertAlmostEqual( left_pad, utils.convert_padding_direction( right_pad, lengths, pad, right_to_left=True, ), ) def test_make_variable(self): t = [{'k': torch.rand(5, 5)}] v = utils.make_variable(t)[0]['k'] self.assertTrue(isinstance(v, Variable)) self.assertFalse(v.data.is_cuda) v = utils.make_variable(t, cuda=True)[0]['k'] self.assertEqual(v.data.is_cuda, torch.cuda.is_available()) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess(utils.item((t1 - t2).abs().max()), 1e-4) if __name__ == '__main__': unittest.main()