Sample data processing scripts for the FAIR Sequence-to-Sequence Toolkit These scripts provide an example of pre-processing data for the NMT task. # prepare-iwslt14.sh Provides an example of pre-processing for IWSLT'14 German to English translation task: ["Report on the 11th IWSLT evaluation campaign" by Cettolo et al.](http://workshop2014.iwslt.org/downloads/proceeding.pdf) Example usage: ``` $ cd data/ $ bash prepare-iwslt14.sh $ cd .. # Binarize the dataset: $ TEXT=data/iwslt14.tokenized.de-en $ python preprocess.py --source-lang de --target-lang en \ --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \ --destdir data-bin/iwslt14.tokenized.de-en # Train the model: $ mkdir -p checkpoints/fconv $ CUDA_VISIBLE_DEVICES=0 python train.py data-bin/iwslt14.tokenized.de-en \ --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \ --label-smoothing 0.1 --force-anneal 200 \ --arch fconv_iwslt_de_en --save-dir checkpoints/fconv # Generate: $ python generate.py data-bin/iwslt14.tokenized.de-en \ --path checkpoints/fconv/checkpoint_best.pt \ --batch-size 128 --beam 5 --remove-bpe ``` # prepare-wmt14en2de.sh Provides an example of pre-processing for the WMT'14 English to German translation task. By default it will produce a dataset that was modeled after ["Attention Is All You Need" by Vaswani et al.](https://arxiv.org/abs/1706.03762) that includes news-commentary-v12 data. To use only data available in WMT'14 or to replicate results obtained in the original paper ["Convolutional Sequence to Sequence Learning" by Gehring et al.](https://arxiv.org/abs/1705.03122) run it with --icml17 instead: ``` $ bash prepare-wmt14en2de.sh --icml17 ``` Example usage: ``` $ cd data/ $ bash prepare-wmt14en2de.sh $ cd .. # Binarize the dataset: $ TEXT=data/wmt14_en_de $ python preprocess.py --source-lang en --target-lang de \ --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \ --destdir data-bin/wmt14_en_de --thresholdtgt 0 --thresholdsrc 0 # Train the model: # If it runs out of memory, try to set --max-tokens 1500 instead $ mkdir -p checkpoints/fconv_wmt_en_de $ python train.py data-bin/wmt14_en_de \ --lr 0.5 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \ --label-smoothing 0.1 --force-anneal 50 \ --arch fconv_wmt_en_de --save-dir checkpoints/fconv_wmt_en_de # Generate: $ python generate.py data-bin/wmt14_en_de \ --path checkpoints/fconv_wmt_en_de/checkpoint_best.pt --beam 5 --remove-bpe ``` # prepare-wmt14en2fr.sh Provides an example of pre-processing for the WMT'14 English to French translation task. Example usage: ``` $ cd data/ $ bash prepare-wmt14en2fr.sh $ cd .. # Binarize the dataset: $ TEXT=data/wmt14_en_fr $ python preprocess.py --source-lang en --target-lang fr \ --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \ --destdir data-bin/wmt14_en_fr --thresholdtgt 0 --thresholdsrc 0 # Train the model: # If it runs out of memory, try to set --max-tokens 1000 instead $ mkdir -p checkpoints/fconv_wmt_en_fr $ python train.py data-bin/wmt14_en_fr \ --lr 0.5 --clip-norm 0.1 --dropout 0.1 --max-tokens 3000 \ --label-smoothing 0.1 --force-anneal 50 \ --arch fconv_wmt_en_fr --save-dir checkpoints/fconv_wmt_en_fr # Generate: $ python generate.py data-bin/fconv_wmt_en_fr \ --path checkpoints/fconv_wmt_en_fr/checkpoint_best.pt --beam 5 --remove-bpe ```