# Unsupervised Cross-lingual Representation Learning at Scale (XLM-RoBERTa) ## Introduction XLM-R (XLM-RoBERTa) is scaled cross lingual sentence encoder. It is trained on `2.5T` of data across `100` languages data filtered from Common Crawl. XLM-R achieves state-of-the-arts results on multiple cross lingual benchmarks. ## Pre-trained models Model | Description | #params | vocab size | Download ---|---|---|---|--- `xlmr.base.v0` | XLM-R using the BERT-base architecture | 250M | 250k | [xlm.base.v0.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/xlmr.base.v0.tar.gz) `xlmr.large.v0` | XLM-R using the BERT-large architecture | 560M | 250k | [xlm.large.v0.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/xlmr.large.v0.tar.gz) (Note: The above models are still under training, we will update the weights, once fully trained, the results are based on the above checkpoints.) ## Results **[XNLI (Conneau et al., 2018)](https://arxiv.org/abs/1809.05053)** Model | average | en | fr | es | de | el | bg | ru | tr | ar | vi | th | zh | hi | sw | ur ---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--- `roberta.large.mnli` _(TRANSLATE-TEST)_ | 77.8 | 91.3 | 82.9 | 84.3 | 81.2 | 81.7 | 83.1 | 78.3 | 76.8 | 76.6 | 74.2 | 74.1 | 77.5 | 70.9 | 66.7 | 66.8 `xlmr.large.v0` _(TRANSLATE-TRAIN-ALL)_ | **82.4** | 88.7 | 85.2 | 85.6 | 84.6 | 83.6 | 85.5 | 82.4 | 81.6 | 80.9 | 83.4 | 80.9 | 83.3 | 79.8 | 75.9 | 74.3 **[MLQA (Lewis et al., 2018)](https://arxiv.org/abs/1910.07475)** Model | average | en | es | de | ar | hi | vi | zh ---|---|---|---|---|---|---|---|--- `BERT-large` | - | 80.2/67.4 | - | - | - | - | - | - `mBERT` | 57.7 / 41.6 | 77.7 / 65.2 | 64.3 / 46.6 | 57.9 / 44.3 | 45.7 / 29.8| 43.8 / 29.7 | 57.1 / 38.6 | 57.5 / 37.3 `xlmr.large.v0` | **70.0 / 52.2** | 80.1 / 67.7 | 73.2 / 55.1 | 68.3 / 53.7 | 62.8 / 43.7 | 68.3 / 51.0 | 70.5 / 50.1 | 67.1 / 44.4 ## Example usage ##### Load XLM-R from torch.hub (PyTorch >= 1.1): ```python import torch xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large.v0') xlmr.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Load XLM-R (for PyTorch 1.0 or custom models): ```python # Download xlmr.large model wget https://dl.fbaipublicfiles.com/fairseq/models/xlmr.large.v0.tar.gz tar -xzvf xlmr.large.v0.tar.gz # Load the model in fairseq from fairseq.models.roberta import XLMRModel xlmr = XLMRModel.from_pretrained('/path/to/xlmr.large.v0', checkpoint_file='model.pt') xlmr.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Apply sentence-piece-model (SPM) encoding to input text: ```python en_tokens = xlmr.encode('Hello world!') assert en_tokens.tolist() == [0, 35378, 8999, 38, 2] xlmr.decode(en_tokens) # 'Hello world!' zh_tokens = xlmr.encode('你好,世界') assert zh_tokens.tolist() == [0, 6, 124084, 4, 3221, 2] xlmr.decode(zh_tokens) # '你好,世界' hi_tokens = xlmr.encode('नमस्ते दुनिया') assert hi_tokens.tolist() == [0, 68700, 97883, 29405, 2] xlmr.decode(hi_tokens) # 'नमस्ते दुनिया' ar_tokens = xlmr.encode('مرحبا بالعالم') assert ar_tokens.tolist() == [0, 665, 193478, 258, 1705, 77796, 2] xlmr.decode(ar_tokens) # 'مرحبا بالعالم' fr_tokens = xlmr.encode('Bonjour le monde') assert fr_tokens.tolist() == [0, 84602, 95, 11146, 2] xlmr.decode(fr_tokens) # 'Bonjour le monde' ``` ##### Extract features from XLM-R: ```python # Extract the last layer's features last_layer_features = xlmr.extract_features(zh_tokens) assert last_layer_features.size() == torch.Size([1, 6, 1024]) # Extract all layer's features (layer 0 is the embedding layer) all_layers = xlmr.extract_features(zh_tokens, return_all_hiddens=True) assert len(all_layers) == 25 assert torch.all(all_layers[-1] == last_layer_features) ``` ## Citation ```bibtex @article{, title = {Unsupervised Cross-lingual Representation Learning at Scale}, author = {Alexis Conneau and Kartikay Khandelwal and Naman Goyal and Vishrav Chaudhary and Guillaume Wenzek and Francisco Guzm\'an and Edouard Grave and Myle Ott and Luke Zettlemoyer and Veselin Stoyanov }, journal={}, year = {2019}, } ```