Overview ======== Fairseq can be extended through user-supplied `plug-ins `_. We support five kinds of plug-ins: - :ref:`Models` define the neural network architecture and encapsulate all of the learnable parameters. - :ref:`Criterions` compute the loss function given the model outputs and targets. - :ref:`Tasks` store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss. - :ref:`Optimizers` update the Model parameters based on the gradients. - :ref:`Learning Rate Schedulers` update the learning rate over the course of training. **Training Flow** Given a ``model``, ``criterion``, ``task``, ``optimizer`` and ``lr_scheduler``, fairseq implements the following high-level training flow:: for epoch in range(num_epochs): itr = task.get_batch_iterator(task.dataset('train')) for num_updates, batch in enumerate(itr): loss = criterion(model, batch) optimizer.backward(loss) optimizer.step() lr_scheduler.step_update(num_updates) lr_scheduler.step(epoch) **Registering new plug-ins** New plug-ins are *registered* through a set of ``@register`` function decorators, for example:: @register_model('my_lstm') class MyLSTM(FairseqModel): (...) Once registered, new plug-ins can be used with the existing :ref:`Command-line Tools`. See the Tutorial sections for more detailed walkthroughs of how to add new plug-ins.