# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import unittest from typing import Dict, List import tests.utils as test_utils import torch from fairseq import utils from fairseq.data import ( AppendEosDataset, Dictionary, LanguagePairDataset, data_utils, noising, ) class TestDataNoising(unittest.TestCase): def _get_test_data_with_bpe_cont_marker(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: BPE vocab with continuation markers as suffixes to denote non-end of word tokens. This is the standard BPE format used in fairseq's preprocessing. x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("he@@") vocab.add_symbol("llo") vocab.add_symbol("how") vocab.add_symbol("are") vocab.add_symbol("y@@") vocab.add_symbol("ou") vocab.add_symbol("n@@") vocab.add_symbol("ew") vocab.add_symbol("or@@") vocab.add_symbol("k") src_tokens = [ ["he@@", "llo", "n@@", "ew", "y@@", "or@@", "k"], ["how", "are", "y@@", "ou"], ] x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _get_test_data_with_bpe_end_marker(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: BPE vocab with end-of-word markers as suffixes to denote tokens at the end of a word. This is an alternative to fairseq's standard preprocessing framework and is not generally supported within fairseq. x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("he") vocab.add_symbol("llo_EOW") vocab.add_symbol("how_EOW") vocab.add_symbol("are_EOW") vocab.add_symbol("y") vocab.add_symbol("ou_EOW") vocab.add_symbol("n") vocab.add_symbol("ew_EOW") vocab.add_symbol("or") vocab.add_symbol("k_EOW") src_tokens = [ ["he", "llo_EOW", "n", "ew_EOW", "y", "or", "k_EOW"], ["how_EOW", "are_EOW", "y", "ou_EOW"], ] x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _get_test_data_with_word_vocab(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: word vocab x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("hello") vocab.add_symbol("how") vocab.add_symbol("are") vocab.add_symbol("you") vocab.add_symbol("new") vocab.add_symbol("york") src_tokens = [ ["hello", "new", "york", "you"], ["how", "are", "you", "new", "york"], ] x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _convert_src_tokens_to_tensor( self, vocab: Dictionary, src_tokens: List[List[str]], append_eos: bool ): src_len = [len(x) for x in src_tokens] # If we have to append EOS, we include EOS in counting src length if append_eos: src_len = [length + 1 for length in src_len] x = torch.LongTensor(len(src_tokens), max(src_len)).fill_(vocab.pad()) for i in range(len(src_tokens)): for j in range(len(src_tokens[i])): x[i][j] = vocab.index(src_tokens[i][j]) if append_eos: x[i][j + 1] = vocab.eos() x = x.transpose(1, 0) return x, torch.LongTensor(src_len) def assert_eos_at_end(self, x, x_len, eos): """Asserts last token of every sentence in x is EOS """ for i in range(len(x_len)): self.assertEqual( x[x_len[i] - 1][i], eos, ( "Expected eos (token id {eos}) at the end of sentence {i} " "but got {other} instead" ).format(i=i, eos=eos, other=x[i][-1]), ) def assert_word_dropout_correct(self, x, x_noised, x_len, l_noised): # Expect only the first word (2 bpe tokens) of the first example # was dropped out self.assertEqual(x_len[0] - 2, l_noised[0]) for i in range(l_noised[0]): self.assertEqual(x_noised[i][0], x[i + 2][0]) def test_word_dropout_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2) self.assert_word_dropout_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised ) self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def assert_word_blanking_correct(self, x, x_noised, x_len, l_noised, unk): # Expect only the first word (2 bpe tokens) of the first example # was blanked out self.assertEqual(x_len[0], l_noised[0]) for i in range(l_noised[0]): if i < 2: self.assertEqual(x_noised[i][0], unk) else: self.assertEqual(x_noised[i][0], x[i][0]) def test_word_blank_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk()) self.assert_word_blanking_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk() ) self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def generate_unchanged_shuffle_map(self, length): return {i: i for i in range(length)} def assert_word_shuffle_matches_expected( self, x, x_len, max_shuffle_distance: int, vocab: Dictionary, expected_shufle_maps: List[Dict[int, int]], expect_eos_at_end: bool, bpe_end_marker=None, ): """ This verifies that with a given x, x_len, max_shuffle_distance, and vocab, we get the expected shuffle result. Args: x: Tensor of shape (T x B) = (sequence_length, batch_size) x_len: Tensor of length B = batch_size max_shuffle_distance: arg to pass to noising expected_shuffle_maps: List[mapping] where mapping is a Dict[old_index, new_index], mapping x's elements from their old positions in x to their new positions in x. expect_eos_at_end: if True, check the output to make sure there is an EOS at the end. bpe_end_marker: str denoting the BPE end token. If this is not None, we set the BPE cont token to None in the noising classes. """ bpe_cont_marker = None if bpe_end_marker is None: bpe_cont_marker = "@@" with data_utils.numpy_seed(1234): word_shuffle = noising.WordShuffle( vocab, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker ) x_noised, l_noised = word_shuffle.noising( x, x_len, max_shuffle_distance=max_shuffle_distance ) # For every example, we have a different expected shuffle map. We check # that each example is shuffled as expected according to each # corresponding shuffle map. for i in range(len(expected_shufle_maps)): shuffle_map = expected_shufle_maps[i] for k, v in shuffle_map.items(): self.assertEqual(x[k][i], x_noised[v][i]) # Shuffling should not affect the length of each example for pre_shuffle_length, post_shuffle_length in zip(x_len, l_noised): self.assertEqual(pre_shuffle_length, post_shuffle_length) if expect_eos_at_end: self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def test_word_shuffle_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=True, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=True, ) def test_word_shuffle_with_eos_nonbpe(self): """The purpose of this is to test shuffling logic with word vocabs""" vocab, x, x_len = self._get_test_data_with_word_vocab(append_eos=True) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=True, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ {0: 0, 1: 1, 2: 3, 3: 2}, {0: 0, 1: 2, 2: 1, 3: 3, 4: 4}, ], expect_eos_at_end=True, ) def test_word_shuffle_without_eos(self): """Same result as word shuffle with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=False, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=False, ) def test_word_shuffle_without_eos_with_bpe_end_marker(self): """Same result as word shuffle without eos except using BPE end token""" vocab, x, x_len = self._get_test_data_with_bpe_end_marker(append_eos=False) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=False, bpe_end_marker="_EOW", ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=False, bpe_end_marker="_EOW", ) def assert_no_eos_at_end(self, x, x_len, eos): """Asserts that the last token of each sentence in x is not EOS """ for i in range(len(x_len)): self.assertNotEqual( x[x_len[i] - 1][i], eos, "Expected no eos (token id {eos}) at the end of sentence {i}.".format( eos=eos, i=i ), ) def test_word_dropout_without_eos(self): """Same result as word dropout with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2) self.assert_word_dropout_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised ) self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def test_word_blank_without_eos(self): """Same result as word blank with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk()) self.assert_word_blanking_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk() ) self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def _get_noising_dataset_batch( self, src_tokens_no_pad, src_dict, use_append_eos_dataset=False ): """ Constructs a NoisingDataset and the corresponding LanguagePairDataset(NoisingDataset(src), src). If we set use_append_eos_dataset to True, wrap the source dataset in AppendEosDataset to append EOS to the clean source when using it as the target. In practice, we should use AppendEosDataset because our models usually have source without EOS but target with EOS. """ src_dataset = test_utils.TestDataset(data=src_tokens_no_pad) noising_dataset = noising.NoisingDataset( src_dataset=src_dataset, src_dict=src_dict, seed=1234, max_word_shuffle_distance=3, word_dropout_prob=0.2, word_blanking_prob=0.2, noising_class=noising.UnsupervisedMTNoising, ) tgt = src_dataset if use_append_eos_dataset: tgt = AppendEosDataset(src_dataset, src_dict.eos()) language_pair_dataset = LanguagePairDataset( src=noising_dataset, tgt=tgt, src_sizes=None, src_dict=src_dict ) dataloader = torch.utils.data.DataLoader( dataset=language_pair_dataset, batch_size=2, collate_fn=language_pair_dataset.collater, ) denoising_batch_result = next(iter(dataloader)) return denoising_batch_result def test_noising_dataset_with_eos(self): src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker( append_eos=True ) # Format data for src_dataset src_tokens = torch.t(src_tokens) src_tokens_no_pad = [] for src_sentence in src_tokens: src_tokens_no_pad.append( utils.strip_pad(tensor=src_sentence, pad=src_dict.pad()) ) denoising_batch_result = self._get_noising_dataset_batch( src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict ) eos, pad = src_dict.eos(), src_dict.pad() # Generated noisy source as source expected_src = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [pad, pad, pad, 6, 8, 9, 7, eos]] ) # Original clean source as target (right-padded) expected_tgt = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]] ) generated_src = denoising_batch_result["net_input"]["src_tokens"] tgt_tokens = denoising_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def test_noising_dataset_without_eos(self): """ Similar to test noising dataset with eos except that we have to set use_append_eos_dataset=True so that we wrap the source dataset in the AppendEosDataset when using it as the target in LanguagePairDataset. """ src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker( append_eos=False ) # Format data for src_dataset src_tokens = torch.t(src_tokens) src_tokens_no_pad = [] for src_sentence in src_tokens: src_tokens_no_pad.append( utils.strip_pad(tensor=src_sentence, pad=src_dict.pad()) ) denoising_batch_result = self._get_noising_dataset_batch( src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict, use_append_eos_dataset=True, ) eos, pad = src_dict.eos(), src_dict.pad() # Generated noisy source as source expected_src = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13], [pad, pad, pad, 6, 8, 9, 7]] ) # Original clean source as target (right-padded) expected_tgt = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]] ) generated_src = denoising_batch_result["net_input"]["src_tokens"] tgt_tokens = denoising_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()