Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Fairseq
Commits
e40363d7
Commit
e40363d7
authored
May 09, 2018
by
Sai
Committed by
Myle Ott
May 09, 2018
Browse files
Add pretrained embedding support (#151)
parent
48c4c6d3
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
87 additions
and
6 deletions
+87
-6
fairseq/models/fconv.py
fairseq/models/fconv.py
+27
-3
fairseq/models/lstm.py
fairseq/models/lstm.py
+28
-3
fairseq/utils.py
fairseq/utils.py
+32
-0
No files found.
fairseq/models/fconv.py
View file @
e40363d7
...
...
@@ -30,10 +30,14 @@ class FConvModel(FairseqModel):
help
=
'dropout probability'
)
parser
.
add_argument
(
'--encoder-embed-dim'
,
type
=
int
,
metavar
=
'N'
,
help
=
'encoder embedding dimension'
)
parser
.
add_argument
(
'--encoder-embed-path'
,
default
=
None
,
type
=
str
,
metavar
=
'STR'
,
help
=
'path to pre-trained encoder embedding'
)
parser
.
add_argument
(
'--encoder-layers'
,
type
=
str
,
metavar
=
'EXPR'
,
help
=
'encoder layers [(dim, kernel_size), ...]'
)
parser
.
add_argument
(
'--decoder-embed-dim'
,
type
=
int
,
metavar
=
'N'
,
help
=
'decoder embedding dimension'
)
parser
.
add_argument
(
'--decoder-embed-path'
,
default
=
None
,
type
=
str
,
metavar
=
'STR'
,
help
=
'path to pre-trained decoder embedding'
)
parser
.
add_argument
(
'--decoder-layers'
,
type
=
str
,
metavar
=
'EXPR'
,
help
=
'decoder layers [(dim, kernel_size), ...]'
)
parser
.
add_argument
(
'--decoder-out-embed-dim'
,
type
=
int
,
metavar
=
'N'
,
...
...
@@ -53,9 +57,21 @@ class FConvModel(FairseqModel):
args
.
max_target_positions
=
args
.
max_positions
if
not
hasattr
(
args
,
'share_input_output_embed'
):
args
.
share_input_output_embed
=
False
encoder_embed_dict
=
None
if
args
.
encoder_embed_path
:
encoder_embed_dict
=
utils
.
parse_embedding
(
args
.
encoder_embed_path
)
utils
.
print_embed_overlap
(
encoder_embed_dict
,
src_dict
)
decoder_embed_dict
=
None
if
args
.
decoder_embed_path
:
decoder_embed_dict
=
utils
.
parse_embedding
(
args
.
decoder_embed_path
)
utils
.
print_embed_overlap
(
decoder_embed_dict
,
dst_dict
)
encoder
=
FConvEncoder
(
src_dict
,
embed_dim
=
args
.
encoder_embed_dim
,
embed_dict
=
encoder_embed_dict
,
convolutions
=
eval
(
args
.
encoder_layers
),
dropout
=
args
.
dropout
,
max_positions
=
args
.
max_source_positions
,
...
...
@@ -63,6 +79,7 @@ class FConvModel(FairseqModel):
decoder
=
FConvDecoder
(
dst_dict
,
embed_dim
=
args
.
decoder_embed_dim
,
embed_dict
=
decoder_embed_dict
,
convolutions
=
eval
(
args
.
decoder_layers
),
out_embed_dim
=
args
.
decoder_out_embed_dim
,
attention
=
eval
(
args
.
decoder_attention
),
...
...
@@ -75,8 +92,8 @@ class FConvModel(FairseqModel):
class
FConvEncoder
(
FairseqEncoder
):
"""Convolutional encoder"""
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
max_positions
=
1024
,
convolutions
=
((
512
,
3
),)
*
20
,
dropout
=
0.1
):
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
embed_dict
=
None
,
max_positions
=
1024
,
convolutions
=
((
512
,
3
),)
*
20
,
dropout
=
0.1
):
super
().
__init__
(
dictionary
)
self
.
dropout
=
dropout
self
.
num_attention_layers
=
None
...
...
@@ -84,6 +101,9 @@ class FConvEncoder(FairseqEncoder):
num_embeddings
=
len
(
dictionary
)
padding_idx
=
dictionary
.
pad
()
self
.
embed_tokens
=
Embedding
(
num_embeddings
,
embed_dim
,
padding_idx
)
if
embed_dict
:
self
.
embed_tokens
=
utils
.
load_embedding
(
embed_dict
,
self
.
dictionary
,
self
.
embed_tokens
)
self
.
embed_positions
=
PositionalEmbedding
(
max_positions
,
embed_dim
,
...
...
@@ -197,7 +217,8 @@ class AttentionLayer(nn.Module):
class
FConvDecoder
(
FairseqIncrementalDecoder
):
"""Convolutional decoder"""
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
out_embed_dim
=
256
,
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
embed_dict
=
None
,
out_embed_dim
=
256
,
max_positions
=
1024
,
convolutions
=
((
512
,
3
),)
*
20
,
attention
=
True
,
dropout
=
0.1
,
share_embed
=
False
):
super
().
__init__
(
dictionary
)
...
...
@@ -215,6 +236,9 @@ class FConvDecoder(FairseqIncrementalDecoder):
num_embeddings
=
len
(
dictionary
)
padding_idx
=
dictionary
.
pad
()
self
.
embed_tokens
=
Embedding
(
num_embeddings
,
embed_dim
,
padding_idx
)
if
embed_dict
:
self
.
embed_tokens
=
utils
.
load_embedding
(
embed_dict
,
self
.
dictionary
,
self
.
embed_tokens
)
self
.
embed_positions
=
PositionalEmbedding
(
max_positions
,
embed_dim
,
...
...
fairseq/models/lstm.py
View file @
e40363d7
...
...
@@ -28,10 +28,14 @@ class LSTMModel(FairseqModel):
help
=
'dropout probability'
)
parser
.
add_argument
(
'--encoder-embed-dim'
,
type
=
int
,
metavar
=
'N'
,
help
=
'encoder embedding dimension'
)
parser
.
add_argument
(
'--encoder-embed-path'
,
default
=
None
,
type
=
str
,
metavar
=
'STR'
,
help
=
'path to pre-trained encoder embedding'
)
parser
.
add_argument
(
'--encoder-layers'
,
type
=
int
,
metavar
=
'N'
,
help
=
'number of encoder layers'
)
parser
.
add_argument
(
'--decoder-embed-dim'
,
type
=
int
,
metavar
=
'N'
,
help
=
'decoder embedding dimension'
)
parser
.
add_argument
(
'--decoder-embed-path'
,
default
=
None
,
type
=
str
,
metavar
=
'STR'
,
help
=
'path to pre-trained decoder embedding'
)
parser
.
add_argument
(
'--decoder-layers'
,
type
=
int
,
metavar
=
'N'
,
help
=
'number of decoder layers'
)
parser
.
add_argument
(
'--decoder-out-embed-dim'
,
type
=
int
,
metavar
=
'N'
,
...
...
@@ -52,9 +56,21 @@ class LSTMModel(FairseqModel):
@
classmethod
def
build_model
(
cls
,
args
,
src_dict
,
dst_dict
):
"""Build a new model instance."""
encoder_embed_dict
=
None
if
args
.
encoder_embed_path
:
encoder_embed_dict
=
utils
.
parse_embedding
(
args
.
encoder_embed_path
)
utils
.
print_embed_overlap
(
encoder_embed_dict
,
src_dict
)
decoder_embed_dict
=
None
if
args
.
decoder_embed_path
:
decoder_embed_dict
=
utils
.
parse_embedding
(
args
.
decoder_embed_path
)
utils
.
print_embed_overlap
(
decoder_embed_dict
,
dst_dict
)
encoder
=
LSTMEncoder
(
src_dict
,
embed_dim
=
args
.
encoder_embed_dim
,
embed_dict
=
encoder_embed_dict
,
num_layers
=
args
.
encoder_layers
,
dropout_in
=
args
.
encoder_dropout_in
,
dropout_out
=
args
.
encoder_dropout_out
,
...
...
@@ -63,6 +79,7 @@ class LSTMModel(FairseqModel):
dst_dict
,
encoder_embed_dim
=
args
.
encoder_embed_dim
,
embed_dim
=
args
.
decoder_embed_dim
,
embed_dict
=
decoder_embed_dict
,
out_embed_dim
=
args
.
decoder_out_embed_dim
,
num_layers
=
args
.
decoder_layers
,
attention
=
bool
(
eval
(
args
.
decoder_attention
)),
...
...
@@ -74,8 +91,8 @@ class LSTMModel(FairseqModel):
class
LSTMEncoder
(
FairseqEncoder
):
"""LSTM encoder."""
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
num_layers
=
1
,
dropout_in
=
0.1
,
dropout_out
=
0.1
):
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
embed_dict
=
None
,
num_layers
=
1
,
dropout_in
=
0.1
,
dropout_out
=
0.1
):
super
().
__init__
(
dictionary
)
self
.
num_layers
=
num_layers
self
.
dropout_in
=
dropout_in
...
...
@@ -84,6 +101,9 @@ class LSTMEncoder(FairseqEncoder):
num_embeddings
=
len
(
dictionary
)
self
.
padding_idx
=
dictionary
.
pad
()
self
.
embed_tokens
=
Embedding
(
num_embeddings
,
embed_dim
,
self
.
padding_idx
)
if
embed_dict
:
self
.
embed_tokens
=
utils
.
load_embedding
(
embed_dict
,
self
.
dictionary
,
self
.
embed_tokens
)
self
.
lstm
=
LSTM
(
input_size
=
embed_dim
,
...
...
@@ -163,7 +183,8 @@ class AttentionLayer(nn.Module):
class
LSTMDecoder
(
FairseqIncrementalDecoder
):
"""LSTM decoder."""
def
__init__
(
self
,
dictionary
,
encoder_embed_dim
=
512
,
embed_dim
=
512
,
def
__init__
(
self
,
dictionary
,
encoder_embed_dim
=
512
,
embed_dim
=
512
,
embed_dict
=
None
,
out_embed_dim
=
512
,
num_layers
=
1
,
dropout_in
=
0.1
,
dropout_out
=
0.1
,
attention
=
True
):
super
().
__init__
(
dictionary
)
...
...
@@ -173,6 +194,10 @@ class LSTMDecoder(FairseqIncrementalDecoder):
num_embeddings
=
len
(
dictionary
)
padding_idx
=
dictionary
.
pad
()
self
.
embed_tokens
=
Embedding
(
num_embeddings
,
embed_dim
,
padding_idx
)
if
embed_dict
:
self
.
embed_tokens
=
utils
.
load_embedding
(
embed_dict
,
self
.
dictionary
,
self
.
embed_tokens
)
self
.
layers
=
nn
.
ModuleList
([
LSTMCell
(
encoder_embed_dim
+
embed_dim
if
layer
==
0
else
embed_dim
,
embed_dim
)
...
...
fairseq/utils.py
View file @
e40363d7
...
...
@@ -248,6 +248,38 @@ def load_align_dict(replace_unk):
return
align_dict
def
print_embed_overlap
(
embed_dict
,
vocab_dict
):
embed_keys
=
set
(
embed_dict
.
keys
())
vocab_keys
=
set
(
vocab_dict
.
symbols
)
overlap
=
len
(
embed_keys
&
vocab_keys
)
print
(
"| Found {}/{} types in embedding file."
.
format
(
overlap
,
len
(
vocab_dict
)))
def
parse_embedding
(
embed_path
):
"""Parse embedding text file into a dictionary of word and embedding tensors.
The first line can have vocabulary size and dimension. The following lines
should contain word and embedding separated by spaces.
Example:
2 5
the -0.0230 -0.0264 0.0287 0.0171 0.1403
at -0.0395 -0.1286 0.0275 0.0254 -0.0932
"""
embed_dict
=
dict
()
with
open
(
embed_path
)
as
f_embed
:
_
=
next
(
f_embed
)
#skip header
for
line
in
f_embed
:
pieces
=
line
.
strip
().
split
()
embed_dict
[
pieces
[
0
]]
=
torch
.
Tensor
([
float
(
weight
)
for
weight
in
pieces
[
1
:]])
return
embed_dict
def
load_embedding
(
embed_dict
,
vocab
,
embedding
):
for
idx
in
range
(
len
(
vocab
)):
token
=
vocab
[
idx
]
if
token
in
embed_dict
:
embedding
.
weight
.
data
[
idx
]
=
embed_dict
[
token
]
return
embedding
def
replace_unk
(
hypo_str
,
src_str
,
alignment
,
align_dict
,
unk
):
from
fairseq
import
tokenizer
# Tokens are strings here
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment