Fairseq provides reference implementations of various sequence-to-sequence models, including:
pip install fastpt*--no-deps(下载fastpt的whl包)
-**Convolutional Neural Networks (CNN)**
source /usr/local/bin/fastpt -E
-[Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
pip install fairseq*(下载的fairseq-fastpt的whl包)
-[Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
-[Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
-[Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
-[wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
-**LightConv and DynamicConv models**
-[Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
-**Long Short-Term Memory (LSTM) networks**
- Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
-**Transformer (self-attention) networks**
- Attention Is All You Need (Vaswani et al., 2017)
-[Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
-[Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
-[Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/transformer_lm/README.md)
-[Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
-[RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
-[wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
+ ROCM_PATH为dtk的路径,默认为/opt/dtk
-[Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
-[Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
-[Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
-[Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
-[Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
-[Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
-[Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
-[Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
Fairseq(-py) is a sequence modeling toolkit that allows researchers and
developers to train custom models for translation, summarization, language
modeling and other text generation tasks.
### What's New:
- November 2019: [CamemBERT model and code released](examples/camembert/README.md)
- November 2019: [BART model and code released](examples/bart/README.md)
- November 2019: [XLM-R models and code released](examples/xlmr/README.md)
- September 2019: [Nonautoregressive translation code released](examples/nonautoregressive_translation/README.md)
- August 2019: [WMT'19 models released](examples/wmt19/README.md)
- July 2019: fairseq relicensed under MIT license
- July 2019: [RoBERTa models and code released](examples/roberta/README.md)
- June 2019: [wav2vec models and code released](examples/wav2vec/README.md)
### Features:
Fairseq provides reference implementations of various sequence-to-sequence models, including:
-**Convolutional Neural Networks (CNN)**
-[Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)
-[Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
-[Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
-[Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
-[wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
-**LightConv and DynamicConv models**
-[Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
-**Long Short-Term Memory (LSTM) networks**
- Effective Approaches to Attention-based Neural Machine Translation (Luong et al., 2015)
-**Transformer (self-attention) networks**
- Attention Is All You Need (Vaswani et al., 2017)
-[Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
-[Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
-[Adaptive Input Representations for Neural Language Modeling (Baevski and Auli, 2018)](examples/language_model/transformer_lm/README.md)
-[Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
-[RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
-[RoBERTa: A Robustly Optimized BERT Pretraining Approach (Liu et al., 2019)](examples/roberta/README.md)
-[wav2vec: Unsupervised Pre-training for Speech Recognition (Schneider et al., 2019)](examples/wav2vec/README.md)
-[Mixture Models for Diverse Machine Translation: Tricks of the Trade (Shen et al., 2019)](examples/translation_moe/README.md)
-[Pay Less Attention with Lightweight and Dynamic Convolutions (Wu et al., 2019)](examples/pay_less_attention_paper/README.md)
-[Understanding Back-Translation at Scale (Edunov et al., 2018)](examples/backtranslation/README.md)
-[Classical Structured Prediction Losses for Sequence to Sequence Learning (Edunov et al., 2018)](https://github.com/pytorch/fairseq/tree/classic_seqlevel)
-[Hierarchical Neural Story Generation (Fan et al., 2018)](examples/stories/README.md)
-[Scaling Neural Machine Translation (Ott et al., 2018)](examples/scaling_nmt/README.md)
-[Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](examples/conv_seq2seq/README.md)
-[Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)](examples/language_model/conv_lm/README.md)