Commit 9c102784 authored by Myle Ott's avatar Myle Ott
Browse files

Add training wall time meter

parent f84e1ed4
......@@ -16,7 +16,7 @@ from itertools import chain
import torch
from fairseq import distributed_utils, optim, utils
from fairseq.meters import AverageMeter, TimeMeter
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.optim import lr_scheduler
......@@ -54,6 +54,7 @@ class Trainer(object):
self.meters['clip'] = AverageMeter() # % of updates clipped
self.meters['oom'] = AverageMeter() # out of memory
self.meters['wall'] = TimeMeter() # wall time in seconds
self.meters['train_wall'] = StopwatchMeter() # train wall time in seconds
self._buffered_stats = defaultdict(lambda: [])
self._flat_grads = None
......@@ -109,9 +110,14 @@ class Trainer(object):
self.meters = extra_state['train_meters']
del extra_state['train_meters']
# reset TimeMeters, since their start times don't make sense anymore
for meter in self.meters.values():
if isinstance(meter, TimeMeter):
meter.reset()
return extra_state
def train_step(self, sample, update_params=True):
def train_step(self, sample, update_params=True, dummy_batch=False):
"""Do forward, backward and parameter update."""
# Set seed based on args.seed and the update number so that we get
# reproducible results when resuming from checkpoints
......@@ -119,6 +125,9 @@ class Trainer(object):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if not dummy_batch:
self.meters['train_wall'].start()
# forward and backward pass
sample = self._prepare_sample(sample)
loss, sample_size, logging_output, oom_fwd = self._forward(sample)
......@@ -132,6 +141,16 @@ class Trainer(object):
# update parameters
if update_params:
agg_logging_output = self._update_params()
else:
agg_logging_output = None # buffering updates
if not dummy_batch:
self.meters['train_wall'].stop()
return agg_logging_output
def _update_params(self):
# gather logging outputs from all replicas
sample_sizes = self._buffered_stats['sample_sizes']
logging_outputs = self._buffered_stats['logging_outputs']
......@@ -186,8 +205,6 @@ class Trainer(object):
self.clear_buffered_stats()
return agg_logging_output
else:
return None # buffering updates
def _forward(self, sample, eval=False):
loss = None
......@@ -320,7 +337,7 @@ class Trainer(object):
def dummy_train_step(self, dummy_batch):
"""Dummy training step for warming caching allocator."""
self.train_step(dummy_batch, update_params=False)
self.train_step(dummy_batch, update_params=False, dummy_batch=True)
self.zero_grad()
self.clear_buffered_stats()
......
......@@ -185,6 +185,7 @@ def get_training_stats(trainer):
if trainer.get_meter('loss_scale') is not None:
stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
stats['train_wall'] = round(trainer.get_meter('train_wall').sum)
return stats
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment