Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Fairseq
Commits
6f96ad78
Commit
6f96ad78
authored
May 09, 2018
by
Sai
Committed by
Myle Ott
Jun 15, 2018
Browse files
Add pretrained embedding support
parent
8300a521
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
34 additions
and
70 deletions
+34
-70
fairseq/models/fconv.py
fairseq/models/fconv.py
+4
-5
fairseq/models/lstm.py
fairseq/models/lstm.py
+24
-56
fairseq/utils.py
fairseq/utils.py
+6
-9
No files found.
fairseq/models/fconv.py
View file @
6f96ad78
...
...
@@ -60,10 +60,6 @@ class FConvModel(FairseqModel):
args
.
max_target_positions
=
args
.
max_positions
if
not
hasattr
(
args
,
'share_input_output_embed'
):
args
.
share_input_output_embed
=
False
if
not
hasattr
(
args
,
'encoder_embed_path'
):
args
.
encoder_embed_path
=
None
if
not
hasattr
(
args
,
'decoder_embed_path'
):
args
.
decoder_embed_path
=
None
encoder_embed_dict
=
None
if
args
.
encoder_embed_path
:
...
...
@@ -108,6 +104,9 @@ class FConvEncoder(FairseqEncoder):
num_embeddings
=
len
(
dictionary
)
self
.
padding_idx
=
dictionary
.
pad
()
self
.
embed_tokens
=
Embedding
(
num_embeddings
,
embed_dim
,
self
.
padding_idx
)
if
embed_dict
:
self
.
embed_tokens
=
utils
.
load_embedding
(
embed_dict
,
self
.
dictionary
,
self
.
embed_tokens
)
self
.
embed_positions
=
PositionalEmbedding
(
max_positions
,
embed_dim
,
...
...
fairseq/models/lstm.py
View file @
6f96ad78
...
...
@@ -30,8 +30,6 @@ class LSTMModel(FairseqModel):
help
=
'encoder embedding dimension'
)
parser
.
add_argument
(
'--encoder-embed-path'
,
default
=
None
,
type
=
str
,
metavar
=
'STR'
,
help
=
'path to pre-trained encoder embedding'
)
parser
.
add_argument
(
'--encoder-hidden-size'
,
type
=
int
,
metavar
=
'N'
,
help
=
'encoder hidden size'
)
parser
.
add_argument
(
'--encoder-layers'
,
type
=
int
,
metavar
=
'N'
,
help
=
'number of encoder layers'
)
parser
.
add_argument
(
'--encoder-bidirectional'
,
action
=
'store_true'
,
...
...
@@ -40,8 +38,6 @@ class LSTMModel(FairseqModel):
help
=
'decoder embedding dimension'
)
parser
.
add_argument
(
'--decoder-embed-path'
,
default
=
None
,
type
=
str
,
metavar
=
'STR'
,
help
=
'path to pre-trained decoder embedding'
)
parser
.
add_argument
(
'--decoder-hidden-size'
,
type
=
int
,
metavar
=
'N'
,
help
=
'decoder hidden size'
)
parser
.
add_argument
(
'--decoder-layers'
,
type
=
int
,
metavar
=
'N'
,
help
=
'number of decoder layers'
)
parser
.
add_argument
(
'--decoder-out-embed-dim'
,
type
=
int
,
metavar
=
'N'
,
...
...
@@ -65,38 +61,21 @@ class LSTMModel(FairseqModel):
base_architecture
(
args
)
"""Build a new model instance."""
if
not
hasattr
(
args
,
'encoder_embed_path'
):
args
.
encoder_embed_path
=
None
if
not
hasattr
(
args
,
'decoder_embed_path'
):
args
.
decoder_embed_path
=
None
if
not
hasattr
(
args
,
'encoder_hidden_size'
):
args
.
encoder_hidden_size
=
args
.
encoder_embed_dim
if
not
hasattr
(
args
,
'decoder_hidden_size'
):
args
.
decoder_hidden_size
=
args
.
decoder_embed_dim
if
not
hasattr
(
args
,
'encoder_bidirectional'
):
args
.
encoder_bidirectional
=
False
def
load_pretrained_embedding_from_file
(
embed_path
,
dictionary
,
embed_dim
):
num_embeddings
=
len
(
dictionary
)
padding_idx
=
dictionary
.
pad
()
embed_tokens
=
Embedding
(
num_embeddings
,
embed_dim
,
padding_idx
)
embed_dict
=
utils
.
parse_embedding
(
embed_path
)
utils
.
print_embed_overlap
(
embed_dict
,
dictionary
)
return
utils
.
load_embedding
(
embed_dict
,
dictionary
,
embed_tokens
)
pretrained_
encoder_embed
=
None
encoder_embed
_dict
=
None
if
args
.
encoder_embed_path
:
pretrained_encoder_embed
=
load_pretrained_embedding_from_file
(
args
.
encoder_embed_path
,
src_dict
,
args
.
encoder_embed_dim
)
pretrained_decoder_embed
=
None
encoder_embed_dict
=
utils
.
parse_embedding
(
args
.
encoder_embed_path
)
utils
.
print_embed_overlap
(
encoder_embed_dict
,
src_dict
)
decoder_embed_dict
=
None
if
args
.
decoder_embed_path
:
pretrained_
decoder_embed
=
load_pretrained_embedding_from_file
(
args
.
decoder_embed_
path
,
dst_dict
,
args
.
decoder_embed_dim
)
decoder_embed
_dict
=
utils
.
parse_embedding
(
args
.
decoder_embed_path
)
utils
.
print_embed_overlap
(
decoder_embed_
dict
,
dst_dict
)
encoder
=
LSTMEncoder
(
dictionary
=
src_dict
,
embed_dim
=
args
.
encoder_embed_dim
,
hidden_size
=
args
.
encoder_hidden_size
,
embed_dict
=
encoder_embed_dict
,
num_layers
=
args
.
encoder_layers
,
dropout_in
=
args
.
encoder_dropout_in
,
dropout_out
=
args
.
encoder_dropout_out
,
...
...
@@ -110,7 +89,7 @@ class LSTMModel(FairseqModel):
decoder
=
LSTMDecoder
(
dictionary
=
dst_dict
,
embed_dim
=
args
.
decoder_embed_dim
,
hidden_size
=
args
.
decoder_hidden_size
,
embed_dict
=
decoder_embed_dict
,
out_embed_dim
=
args
.
decoder_out_embed_dim
,
num_layers
=
args
.
decoder_layers
,
dropout_in
=
args
.
decoder_dropout_in
,
...
...
@@ -125,13 +104,8 @@ class LSTMModel(FairseqModel):
class
LSTMEncoder
(
FairseqEncoder
):
"""LSTM encoder."""
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
hidden_size
=
512
,
num_layers
=
1
,
dropout_in
=
0.1
,
dropout_out
=
0.1
,
bidirectional
=
False
,
left_pad_source
=
LanguagePairDataset
.
LEFT_PAD_SOURCE
,
pretrained_embed
=
None
,
padding_value
=
0.
,
):
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
embed_dict
=
None
,
num_layers
=
1
,
dropout_in
=
0.1
,
dropout_out
=
0.1
):
super
().
__init__
(
dictionary
)
self
.
num_layers
=
num_layers
self
.
dropout_in
=
dropout_in
...
...
@@ -141,10 +115,10 @@ class LSTMEncoder(FairseqEncoder):
num_embeddings
=
len
(
dictionary
)
self
.
padding_idx
=
dictionary
.
pad
()
if
pretrained_embed
is
None
:
self
.
embed_tokens
=
Embedding
(
num_embeddings
,
embed_dim
,
self
.
padding_idx
)
else
:
self
.
embed_tokens
=
pretrained_embed
if
embed_dict
:
self
.
embed_tokens
=
utils
.
load_embedding
(
embed_dict
,
self
.
dictionary
,
self
.
embed_tokens
)
self
.
lstm
=
LSTM
(
input_size
=
embed_dim
,
...
...
@@ -259,12 +233,10 @@ class AttentionLayer(nn.Module):
class
LSTMDecoder
(
FairseqIncrementalDecoder
):
"""LSTM decoder."""
def
__init__
(
self
,
dictionary
,
embed_dim
=
512
,
hidden_size
=
512
,
out_embed_dim
=
512
,
num_layers
=
1
,
dropout_in
=
0.1
,
dropout_out
=
0.1
,
attention
=
True
,
encoder_embed_dim
=
512
,
encoder_output_units
=
512
,
pretrained_embed
=
None
,
):
def
__init__
(
self
,
dictionary
,
encoder_embed_dim
=
512
,
embed_dim
=
512
,
embed_dict
=
None
,
out_embed_dim
=
512
,
num_layers
=
1
,
dropout_in
=
0.1
,
dropout_out
=
0.1
,
attention
=
True
):
super
().
__init__
(
dictionary
)
self
.
dropout_in
=
dropout_in
self
.
dropout_out
=
dropout_out
...
...
@@ -272,15 +244,11 @@ class LSTMDecoder(FairseqIncrementalDecoder):
num_embeddings
=
len
(
dictionary
)
padding_idx
=
dictionary
.
pad
()
if
pretrained_embed
is
None
:
self
.
embed_tokens
=
Embedding
(
num_embeddings
,
embed_dim
,
padding_idx
)
else
:
self
.
embed_tokens
=
pretrained_embed
if
embed_dict
:
self
.
embed_tokens
=
utils
.
load_embedding
(
embed_dict
,
self
.
dictionary
,
self
.
embed_tokens
)
self
.
encoder_output_units
=
encoder_output_units
assert
encoder_output_units
==
hidden_size
,
\
'{} {}'
.
format
(
encoder_output_units
,
hidden_size
)
# TODO another Linear layer if not equal
self
.
layers
=
nn
.
ModuleList
([
LSTMCell
(
...
...
fairseq/utils.py
View file @
6f96ad78
...
...
@@ -263,7 +263,6 @@ def print_embed_overlap(embed_dict, vocab_dict):
overlap
=
len
(
embed_keys
&
vocab_keys
)
print
(
"| Found {}/{} types in embedding file."
.
format
(
overlap
,
len
(
vocab_dict
)))
def
parse_embedding
(
embed_path
):
"""Parse embedding text file into a dictionary of word and embedding tensors.
...
...
@@ -275,15 +274,14 @@ def parse_embedding(embed_path):
the -0.0230 -0.0264 0.0287 0.0171 0.1403
at -0.0395 -0.1286 0.0275 0.0254 -0.0932
"""
embed_dict
=
{}
embed_dict
=
dict
()
with
open
(
embed_path
)
as
f_embed
:
_
=
next
(
f_embed
)
#
skip header
_
=
next
(
f_embed
)
#
skip header
for
line
in
f_embed
:
pieces
=
line
.
strip
().
split
()
embed_dict
[
pieces
[
0
]]
=
torch
.
Tensor
([
float
(
weight
)
for
weight
in
pieces
[
1
:]])
return
embed_dict
def
load_embedding
(
embed_dict
,
vocab
,
embedding
):
for
idx
in
range
(
len
(
vocab
)):
token
=
vocab
[
idx
]
...
...
@@ -291,7 +289,6 @@ def load_embedding(embed_dict, vocab, embedding):
embedding
.
weight
.
data
[
idx
]
=
embed_dict
[
token
]
return
embedding
def
replace_unk
(
hypo_str
,
src_str
,
alignment
,
align_dict
,
unk
):
from
fairseq
import
tokenizer
# Tokens are strings here
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment