# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=missing-module-docstring # pylint: disable=missing-class-docstring # pylint: disable=missing-function-docstring """ Test AdaScale with a single node (1 CPU or 1 GPU). """ import tempfile import numpy as np import pytest import torch from torch import Tensor from torch.nn import Linear from torch.optim import SGD from torch.optim.lr_scheduler import LambdaLR from fairscale.optim import AdaScale skip_if_no_gpu = pytest.mark.skipif(torch.cuda.device_count() < 1, reason="1 GPU is required") def test_basic_cpu(): """Test single batch behavior on CPU""" model = Linear(2, 2, bias=False) try: optim = AdaScale(SGD(model.parameters(), lr=0.1)) except RuntimeError: return assert False, "Single batch AdaScale should not be suppported" def test_loss_accum_cpu(): """Test the loss accumulation behavior on CPU Loss accumulation is NOT SUPPORTED. This test shows that it does not work. """ model = Linear(2, 2, bias=False) # num_gradients_to_accumulate value doesn't matter in this negative test. optim = AdaScale(SGD(model.parameters(), lr=0.1), num_gradients_to_accumulate=123) # data 1 in_data = Tensor([0.0, 1.0]) loss = model(in_data).sum() # data 2 in_data = Tensor([1.0, 0.0]) loss += model(in_data).sum() # data 3 in_data = Tensor([1.0, 2.0]) loss += model(in_data).sum() # backward, but gradient is only produced once by the autograd engine. loss.backward() # therefore, the gain will always be 1, which renders adascale as noop. optim.step() assert np.allclose(optim.gain(), 1.0), optim.gain() # IMPORTANT: make sure these test_cases values are sync'ed with the DDP # test in test_ddp_adascale.py. This way, we make sure gradient accumulation # works exactly like that in DDP. @pytest.mark.parametrize("cpu", [True, False]) @pytest.mark.parametrize( "test_case", [ # "input" value is a list of input tensors for micro-batch 0 and micro-batch 1. {"input": [[1.0, 0], [0, 1.0]], "expected_gain": 2.0}, {"input": [[1.0, 1.0], [1.0, 1.0]], "expected_gain": 1.0000001249999846}, {"input": [[-1.0, 1.0], [1.0, -1.0]], "expected_gain": 2.0}, {"input": [[1.0, 4.0], [5.0, 0.5]], "expected_gain": 1.5022222222222221}, {"input": [[-0.2, 3.0], [5.0, 0.5]], "expected_gain": 1.9433267229211089}, # "inputs" to trigger multiple iteration tests, which make sure the # smoothing factor calculation is also covered. {"inputs": [[[-0.2, 3.3], [5.2, 0.7]], [[1.0, 4.0], [3.1, 0.1]]], "expected_gain": 1.744159431359284}, ], ) def test_grad_accum(test_case, cpu): """Test the basic functionality on CPU/GPU with gradient accumulation without DDP""" model = Linear(2, 2, bias=False) if not cpu: if torch.cuda.device_count() < 1: pytest.skip("1 GPU is required") model = model.cuda() optim = AdaScale(SGD(model.parameters(), lr=0.1), num_gradients_to_accumulate=2) expected_gain = test_case["expected_gain"] if "input" in test_case: data = [test_case["input"]] * 2 gains = [expected_gain] * 2 else: data = test_case["inputs"] gains = [None, expected_gain] for in_data, exp_gain in zip(data, gains): # test 2 iterations catch more corner cases. # grad pass 1 in_data_0 = Tensor(in_data[0]) if not cpu: in_data_0 = in_data_0.cuda() out = model(in_data_0) out.sum().backward() # grad pass 2 in_data_1 = Tensor(in_data[1]) if not cpu: in_data_1 = in_data_1.cuda() out = model(in_data_1) out.sum().backward() if exp_gain is not None: assert np.allclose(optim.gain(), exp_gain), optim.gain() # stepping it. Note that if we did more than 2 passes as promised by the # num_gradients_to_accumulate argument above, AdaScale is not be able to # detect that mistake for now. The result will just be wrong in that case. optim.step() optim.zero_grad() @skip_if_no_gpu def test_state_checkpointing(): """ Test state checkpointing on GPU since that's the common case. Note, we don't support checkpointing in the middle of gradient accumulation step. Therefore, it is not tested here. AdaScale doesn't have distributed state. Otherwise, it will need a unit test for checkpointing with DDP. """ # Constants. accum_steps = 3 in_dim = 5 # Setup. def make_model_and_optim(): model = Linear(in_dim, 2, bias=False) model = model.cuda() optim = AdaScale(SGD(model.parameters(), lr=0.1, momentum=0.9), num_gradients_to_accumulate=accum_steps) return model, optim model, optim = make_model_and_optim() # Run a bit. def run_a_bit(replay_data=None): print("running") data = [] replay_data_idx = 0 for _ in range(6): # run some steps for i in range(accum_steps): if replay_data is None: in_data = torch.rand(in_dim).cuda() data.append(in_data) else: in_data = replay_data[replay_data_idx] replay_data_idx += 1 out = model(in_data) out.sum().backward() # print(out.sum().item()) print(model.weight.grad) if i == accum_steps - 1: optim.step() optim.zero_grad() return out, data run_a_bit() with tempfile.NamedTemporaryFile() as f: temp_file_name = f.name # Save a checkpoint. torch.save({"model": model.state_dict(), "optim": optim.state_dict()}, temp_file_name) # Train more. out, replay_data = run_a_bit() # Save the gain and out. expected_out = out.sum().item() expected_gain = optim.gain() # Load back the checkpoint. model, optim = make_model_and_optim() # They both need to start afresh. ckpt = torch.load(temp_file_name) model.load_state_dict(ckpt["model"]) optim.load_state_dict(ckpt["optim"]) # Train the same steps. out, _ = run_a_bit(replay_data) # Assert the results. assert np.allclose(out.sum().item(), expected_out), out.sum().item() assert np.allclose(optim.gain(), expected_gain), optim.gain() def test_lr_scheduler(): """Test AdaScale working with torch.optim.lr_scheduler """ model = Linear(2, 2, bias=False) optim = AdaScale(SGD(model.parameters(), lr=0.1), num_gradients_to_accumulate=3) # We use 1, not 0.1 here since scheduler.step() is called here first. scheduler = LambdaLR(optim, lr_lambda=lambda epoch: 1 / 10 ** epoch) for epoch in range(3): for data_idx in range(10): for accumulation in range(3): in_data = torch.rand(2) loss = model(in_data).sum() loss.backward() assert optim.gain() <= 3, optim.gain() optim.step() # asserting LR is right assert np.allclose(optim.param_groups[0]["lr"], 0.1 / 10 ** epoch), optim.param_groups[0]["lr"] scheduler.step() # asserting LR is right assert np.allclose(optim.param_groups[0]["lr"], 0.1 / 10 ** (epoch + 1)), optim.param_groups[0]["lr"]