# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. """ Testing Auto Shard functionality of non nn.Sequential models. """ import math import pytest import torch import torch.nn import torch.nn as nn from fairscale.utils.testing import torch_version class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) self.d_model = d_model pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer("pe", pe) def forward(self, x): # TODO(anj): Fix the following error when using autoshard # Error: TypeError: slice indices must be integers or None or have an __index__ method # x = x + self.pe[:x.size(0), self.d_model] return self.dropout(x) class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__() self.pos_encoder = PositionalEncoding(ninp, dropout) encoder_layers = torch.nn.TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = torch.nn.TransformerEncoder(encoder_layers, nlayers) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float("-inf")).masked_fill(mask == 1, float(0.0)) return mask def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, *args): src = args[0] src_mask = args[1] src = self.encoder(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.transformer_encoder(src, src_mask) output = self.decoder(output) return output bptt = 35 ntokens = 28783 # the size of vocabulary emsize = 200 # embedding dimension nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder nlayers = 1 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder nhead = 2 # the number of heads in the multiheadattention models dropout = 0.2 # the dropout value def test_single_run(): if torch_version() < (1, 8, 0): pytest.skip("requires torch version >= 1.8.0") from fairscale.experimental.nn.auto_shard import shard_model model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout) sharded_model = shard_model(model) assert len(sharded_model) == 2, "Length is sharded model is incorrect." expected_param_nums = [5998600, 5785383] for i, model in enumerate(sharded_model): param_count = {} for name, module in model.named_modules(): if "." in name: continue param_count[name] = sum([x.numel() for x in module.parameters()]) assert expected_param_nums[i] == param_count[""] src_mask = torch.randn((35, 35), dtype=torch.float32) src = torch.randint(1, ntokens, (35, 20)) input = [src, src_mask] for model in sharded_model: if type(input) == list: input = model(*input) else: input = model(input) assert input.size() == torch.Size([35, 20, 28783])