# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import argparse from collections import defaultdict from functools import reduce import gc import logging import math import operator import os import pprint import time from benchmark_dataset import BenchmarkLMDataset, collate_sentences_lm import datasets import models import numpy import torch from torch.distributed import rpc import torch.multiprocessing as mp import torch.nn as nn from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data import DataLoader from fairscale.nn import Pipe from fairscale.nn.model_parallel import initialize_model_parallel from fairscale.nn.model_parallel.initialize import get_data_parallel_group, get_pipeline_parallel_group from fairscale.nn.pipe import LazyModule, pipe from fairscale.optim import GradScaler from fairscale.optim.oss import OSS from fairscale.utils.testing import dist_init, get_worker_map try: from fairscale.optim import Adam # type: ignore can_benchmark = True except ImportError: from torch.optim import Adam # type: ignore can_benchmark = False def init_random_seed(seed: int): torch.manual_seed(seed) torch.cuda.manual_seed(seed) numpy.random.seed(seed) def make_model(args, device, config): ninp = config["ninp"] nhead = config["nhead"] initrange = config["initrange"] dropout = config["dropout"] vocab_size = config["vocab_size"] nhid = config["nhid"] lr = config["lr"] ndecoder = args.num_decoder_layers if args.lazy_construction: layers = [ LazyModule(lambda: models.EmbeddingLayer(vocab_size, ninp, initrange)), LazyModule(lambda: models.PositionalEncodingLayer(ninp, dropout)), ] for _ in range(ndecoder): layers.append(LazyModule(lambda: models.TransformerDecoderLayer(ninp, nhead, nhid, dropout))) layers.append(LazyModule(lambda: models.LinearLayer(ninp, vocab_size, initrange))) model = layers else: model = models.TransformerLMSequntial(vocab_size, ninp, nhead, nhid, dropout, initrange, ndecoder).to(device) def make_adam(params): if args.ddp_zero: return OSS(params=params, optim=Adam, group=get_data_parallel_group(), lr=lr) else: return Adam(params, lr=lr) optimizer = make_adam return model, optimizer def get_tensors_by_size_bucket(): size_buckets = defaultdict(int) for obj in gc.get_objects(): if not isinstance(obj, torch.Tensor): continue if obj.device.type == "cuda": size_buckets[(*obj.size(),) + (obj.element_size(),)] += 1 return size_buckets def dump_size_buckets(size_buckets, prefix=""): total = 0 for key, value in size_buckets.items(): this = reduce(operator.mul, key) * value total += this print(prefix + f"{key} : {value}, {this}") print(prefix + f"total = {total}") last_size_buckets = None once = True def safe_rank(): try: return torch.distributed.get_rank() except AssertionError: return 0 def check_size_buckets(): global last_size_buckets global once size_buckets = get_tensors_by_size_bucket() if last_size_buckets is not None: if size_buckets != last_size_buckets: print(f"difference is oustanding tensors: {safe-rank()}") dump_size_buckets(last_size_buckets, "old: ") dump_size_buckets(size_buckets, "new: ") if once: print(f"dumping buckets for: {safe_rank()}") dump_size_buckets(last_size_buckets, "old: ") dump_size_buckets(size_buckets, "new: ") once = False else: print(f"size buckets none on {safe_rank()}") last_size_buckets = size_buckets def dump_cuda_tensors(): print(f"dumping cuda tensors...") for obj in gc.get_objects(): if not isinstance(obj, torch.Tensor): continue if obj.device.type == "cuda": size_buckets[(*obj.size(),) + (obj.element_size(),)] += 1 print(f"outstanding cuda tensors:") total = 0 for key, value in size_buckets.items(): this = reduce(operator.mul, key) * value total += this print(f"{key} : {value}, {this}") print(f"total size = {total}") pprint.pprint(torch.cuda.memory_stats()) def log_number_of_parameters(model): num_params = reduce(operator.add, (reduce(operator.mul, x.size()) for x in model.parameters())) if model.group: total = torch.Tensor([num_params]) if torch.cuda.is_available(): total = total.cuda() torch.distributed.all_reduce(total, group=model.group) logging.info( f"training model, #params = {num_params}, group: {model.group.rank()}, grank:" f" {torch.distributed.get_rank()}, sizes {model.group.size()}" ) torch.distributed.barrier() if model.group.rank() == 0: logging.info(f"total #prams = {total.item()}") else: logging.info(f"training model, #params = {num_params}") def get_device(model, index): if isinstance(model, DDP): model = model.module if not torch.cuda.is_available(): return torch.device("cpu") if model.devices: return model.devices[index] else: return torch.cuda.current_device() def get_fake_dataloader(lm_dataloader_len): fake_input = {"input": torch.zeros(args.batch_size)} class FakeDataset: def __getitem__(self, index): return fake_input def __len__(self): return lm_dataloader_len return FakeDataset() def train(data_config, model, benchmark_config, args): lm_dataloader = data_config["data"] criterion = benchmark_config["criterion"] vocab_size = benchmark_config["vocab_size"] optimizer = data_config["optimizer"] model.train() log_number_of_parameters(model) total_loss = 0.0 start_time = time.time() word_counter = 0 optimizer = optimizer(model.parameters()) pipe_group = model.group if args.ddp_zero: model = DDP( model, device_ids=[torch.cuda.current_device()], process_group=get_data_parallel_group(), find_unused_parameters=False, ) # TODO(anj-s): Avoid sending fake data to all replicas except the first and last one. if pipe_group and pipe_group.rank() != 0 and pipe_group.rank() != (pipe_group.size() - 1): lm_dataloader = get_fake_dataloader(len(lm_dataloader)) for i, batch in enumerate(lm_dataloader): if args.max_batch and i > args.max_batch: break optimizer.zero_grad() try: if (pipe_group is None or pipe_group.rank() == 0) and not args.ddp_zero: tmp = batch["input"].to(get_device(model, 0)) output = model(tmp) else: output = model(batch["input"]) except Exception as e: raise RuntimeError(f"training failed on {torch.distributed.get_rank()}") from e if pipe_group is None or pipe_group.rank() == pipe_group.size() - 1: target = batch["target"].to(get_device(model, -1)) output = output.to(target.device) loss = criterion(output.view(-1, vocab_size), target.view(-1)) if args.ddp_zero: ddp_group = get_data_parallel_group() torch.distributed.all_reduce(loss, op=torch.distributed.ReduceOp.SUM, group=ddp_group) loss /= ddp_group.size() loss.backward() del target else: if args.ddp_zero: model.module.back_helper(output) else: model.back_helper(output) del output torch.nn.utils.clip_grad_value_(model.parameters(), benchmark_config["clip_value"]) optimizer.step() if pipe_group is None or pipe_group.rank() == pipe_group.size() - 1: total_loss += loss.item() log_interval = 1 word_counter += batch["ntokens"] if i % log_interval == 0 and i > 0: cur_loss = total_loss / log_interval elapsed = time.time() - start_time print( "| batch {:5d} | wps {:5.2f} | loss {:5.2f} | ppl {:8.2f}".format( i, word_counter / elapsed, cur_loss, math.exp(cur_loss) ) ) word_counter = 0 total_loss = 0 start_time = time.time() def evaluate(eval_model, data_source, criterion, bptt, ntokens): eval_model.eval() total_loss = 0.0 def get_batch(source, i, bptt): seq_len = min(bptt, len(source) - 1 - i) data = source[i : i + seq_len] target = source[i + 1 : i + 1 + seq_len].view(-1) return data, target with torch.no_grad(): for i in range(0, data_source.size(0) - 1, bptt): data, targets = get_batch(data_source, i, bptt) output = eval_model(data) output = output.to(targets.device) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).item() return total_loss / (len(data_source) - 1) def get_number_of_words(data): return data.size()[0] * data.size()[1] def benchmark_language_model(model_config, model, benchmark_config, args): ntokens, train_data, val_data, test_data = model_config["data"] optimizer = model_config["optimizer"] criterion = benchmark_config["criterion"] epoch = 1 bptt = 35 start_time = time.time() print("-" * 110) print("| start of epoch {:1d}".format(epoch)) print("-" * 110) epoch_start_time = time.time() train(train_data, model, criterion, optimizer, bptt, ntokens, args) val_loss = 1 # evaluate(model, val_data, criterion, bptt, ntokens) print("-" * 89) print( "| end of epoch {:1d} | time: {:5.2f}s | valid loss {:5.2f} ".format( epoch, (time.time() - epoch_start_time), val_loss ) ) print("-" * 110) elapsed_time = time.time() - start_time nwords = get_number_of_words(train_data) + get_number_of_words(val_data) wps = nwords / elapsed_time test_loss = 1 # evaluate(model, test_data, criterion, bptt, ntokens) print("=" * 89) print( "| end of training | test loss {:5.2f} \n| time: {:5.2f}s | words: {:3d} | wps: {:5.2f}".format( test_loss, elapsed_time, nwords, wps ) ) print("=" * 110) if can_benchmark and len(model.balance) == 4: # Assert that words per second is within 3 standard deviations of the average # of six golden runs assert wps > 36954.4 - (3 * 116.825) print("Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(0)["allocated_bytes.all.peak"])) print("Peak allocated bytes on cuda:1: {:1d}".format(torch.cuda.memory_stats(1)["allocated_bytes.all.peak"])) print("Peak allocated bytes on cuda:2: {:1d}".format(torch.cuda.memory_stats(2)["allocated_bytes.all.peak"])) print("Peak allocated bytes on cuda:3: {:1d}".format(torch.cuda.memory_stats(3)["allocated_bytes.all.peak"])) # Assert that memory usage on each GPU is within 10% of golden run # Right-hand-side is golden run bytes * 110% assert torch.cuda.memory_stats(0)["allocated_bytes.all.peak"] < 4061909504 * 1.1 assert torch.cuda.memory_stats(1)["allocated_bytes.all.peak"] < 4050944 * 1.1 assert torch.cuda.memory_stats(2)["allocated_bytes.all.peak"] < 10427392 * 1.1 assert torch.cuda.memory_stats(3)["allocated_bytes.all.peak"] < 2031824896 * 1.1 print("No regression detected") def generate_balance_weighted(num_devices, num_layers, fraction=0.5): balance = [] layers_assigned = 0 average_count = num_layers / num_devices last_layers = int(average_count * fraction) balance = generate_balance(num_devices - 1, num_layers - last_layers) balance.append(last_layers) return balance def generate_balance(num_devices, num_layers): balance = [] layers_assigned = 0 for i in range(num_devices): x = (num_layers - layers_assigned) / (num_devices - i) if x.is_integer(): balance.append(int(x)) layers_assigned += x else: balance.append(math.ceil(x)) layers_assigned += math.ceil(x) return balance def make_model_and_data(args, config=None): """Return a dict with the given model, dataset and optimizer.""" device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") if args.use_synthetic_data: model, optimizer = make_model(args, device, config) lm_dataset = BenchmarkLMDataset() lm_dataloader = DataLoader( lm_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0, collate_fn=collate_sentences_lm ) return {"model": model, "optimizer": optimizer, "data": lm_dataloader} else: data = datasets.get_wikitext2_data(device) ntokens, _, _, _ = data config["vocab_size"] = ntokens model, optimizer = make_model(args, device, ntokens) return { "model": model, "optimizer": optimizer, "data": data, } def create_benchmark_config(model_name): """Return a dict with configurations required for benchmarking `model_name` model.""" if model_name == "seq_pred": return { "vocab_size": 10000, "ninp": 2048, # embedding dimension "nhid": 2048, # the dimension of the feedforward network model in nn.TransformerEncoder "nhead": 32, # the number of heads in the multiheadattention models "dropout": 0, "initrange": 0.1, "criterion": nn.CrossEntropyLoss(), "lr": 0.01, # learning rate "scaler": GradScaler(), "clip_value": 0.05, } def benchmark_single_process(args): """Benchmark a given model using a single process and multiple devices.""" num_devices = torch.cuda.device_count() if torch.cuda.is_available() else 1 assert num_devices > 0 init_random_seed(0) benchmark_config = create_benchmark_config(args.model_name) model_config = make_model_and_data(args, config=benchmark_config) model = model_config["model"] balance = generate_balance(min(num_devices, 4), len(model)) p = pipe.Pipe( model, balance, chunks=args.chunks, pipelined_backward=args.pipelined_backward, checkpoint=args.checkpoint ) del model del model_config["model"] if args.use_synthetic_data: train(model_config, p, benchmark_config, args) else: benchmark_language_model(model_config, p, benchmark_config, args) def run_mp_worker(args, available_workers): benchmark_config = create_benchmark_config(args.model_name) model_config = make_model_and_data(args, config=benchmark_config) model = model_config["model"] balance = generate_balance_weighted(get_pipeline_parallel_group().size(), len(model), 0.8) p = pipe.Pipe( model, balance, style=Pipe.AsyncSchedule, chunks=args.chunks, worker_map=get_worker_map(), input_device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"), pipelined_backward=args.pipelined_backward, checkpoint=args.checkpoint, # TODO(anj-s): Do we need to comment this out? loss_fn=benchmark_config["criterion"], ) if torch.cuda.is_available(): p = p.cuda() if args.all_at_once and p.pipeline: print(f"running all at once") p.pipeline.all_at_once = True if args.use_synthetic_data: train(model_config, p, benchmark_config, args) else: benchmark_language_model(model_config, p, benchmark_config, args) def run_worker(rank, world_size, args): if args.world_size != 0: world_size = args.world_size dist_init(rank + args.rank_base, world_size, hostname=args.host) initialize_model_parallel(1, world_size) init_random_seed(0) run_mp_worker(args, world_size) rpc.shutdown() torch.distributed.destroy_process_group() def bench_multi_process(args, all_at_once=False): if args.local_world_size != 0: world_size = args.local_world_size else: world_size = min(torch.cuda.device_count(), 2) mp.spawn(run_worker, args=(world_size, args), nprocs=world_size, join=True) best_device_map = { 0: "mlx5_0:1", 1: "mlx5_0:1", 2: "mlx5_1:1", 3: "mlx5_1:1", 4: "mlx5_2:1", 5: "mlx5_2:1", 6: "mlx5_3:1", 7: "mlx5_3:1", } def bench_mpi(args): guess_rank = int(os.environ["OMPI_COMM_WORLD_RANK"]) world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"]) local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"]) os.environ["UCX_NET_DEVICES"] = best_device_map[local_rank] os.environ["MASTER_ADDR"] = args.host os.environ["MASTER_PORT"] = "10638" if args.socket_name: os.environ["GLOO_SOCKET_IFNAME"] = args.socket_name os.environ["TP_SOCKET_IFNAME"] = args.socket_name torch.distributed.init_process_group(backend="gloo", rank=guess_rank, world_size=world_size) os.environ["MASTER_ADDR"] = args.host os.environ["MASTER_PORT"] = "10639" init_method = f"tcp://{os.environ['MASTER_ADDR']}:{os.environ['MASTER_PORT']}" rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() torch.cuda.set_device(local_rank % torch.cuda.device_count()) rpc.init_rpc( f"Test{rank}", rank=rank, world_size=world_size, backend=rpc.BackendType.PROCESS_GROUP, rpc_backend_options=rpc.ProcessGroupRpcBackendOptions(rpc_timeout=20, init_method=init_method), ) backends = {"model_parallel_backend": "nccl", "pipeline_backend": "mpi", "ddp_backend": "nccl"} if args.ddp_zero: initialize_model_parallel(1, 4, **backends) else: initialize_model_parallel(1, world_size, **backends) init_random_seed(0) run_mp_worker(args, world_size) rpc.shutdown() torch.distributed.destroy_process_group() parser = argparse.ArgumentParser(description="benchmark") parser.add_argument("--local-world-size", "-l", type=int, default=0, help="local world size") parser.add_argument("--world-size", "-w", type=int, default=0, help="world size") parser.add_argument("--rank-base", "-r", type=int, help="rank base", default=0) parser.add_argument("--host", "-o", type=str, default="localhost", help="hostname") parser.add_argument("--no-mpi", action="store_true", default=False, help="disable mpi") parser.add_argument("--chunks", type=int, default=1, help="number of microbatches per batch") parser.add_argument("--batch-size", type=int, default=8, help="size of a batch") parser.add_argument("--all-at-once", action="store_true", default=False, help="do backward pass on whole batch at once") parser.add_argument("--max-batch", type=int, default=4, help="Max number of batches") parser.add_argument("--socket-name", type=str, default=None, help="socket ifname for gloo/tp") parser.add_argument("--num-decoder-layers", type=int, default=10, help="Number of decoder layers in the model") parser.add_argument("--ddp-zero", action="store_true", default=False, help="enable ddp") parser.add_argument( "--lazy-construction", action="store_true", default=False, help="Number of decoder layers in the model" ) parser.add_argument( "--checkpoint", default="never", choices=["always", "except_last", "never"], help="Checkpointing strategy for pipe" ) parser.add_argument( "--pipelined-backward", dest="pipelined_backward", action="store_true", help="Pipelined backward pass" ) parser.add_argument( "--no-pipelined-backward", dest="pipelined_backward", action="store_false", help="Pipelined backward pass" ) parser.add_argument("--use_synthetic_data", default=True, help="Uses synthetic data for a sample training run.") parser.add_argument( "--model_name", default="seq_pred", choices=["seq_pred", "transformer"], help="Model used to benchmark pipe." ) parser.set_defaults(pipelined_backward=True) if __name__ == "__main__": args = parser.parse_args() # TODO(anj-s): Add support for multiprocess benchmarking. if args.no_mpi or "OMPI_COMM_WORLD_RANK" not in os.environ: print(f"Running benchmark with args: {args}") benchmark_single_process(args) else: if os.environ["OMPI_COMM_WORLD_RANK"] == "0": print(f"Running benchmark with args: {args}") bench_mpi(args)