# adapted from https://github.com/pytorch/examples/blob/master/mnist/main.py from __future__ import print_function import argparse import time import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms from fairscale.nn.data_parallel import ShardedDataParallel WORLD_SIZE = 2 OPTIM = torch.optim.RMSprop BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO def dist_init(rank, world_size, backend): print(f"Using backend: {backend}") dist.init_process_group(backend=backend, init_method="tcp://localhost:29501", rank=rank, world_size=world_size) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(rank, args, model, device, train_loader, num_epochs): ############## # SETUP dist_init(rank, WORLD_SIZE, BACKEND) ddp = ShardedDataParallel( module=model, optimizer=torch.optim.Adadelta, optimizer_params={"lr": 1e-4}, world_size=WORLD_SIZE, broadcast_buffers=True, ) ddp.train() optimizer = ddp.optimizer # Reset the memory use counter torch.cuda.reset_peak_memory_stats(rank) # Training loop torch.cuda.synchronize(rank) training_start = time.monotonic() loss_fn = nn.CrossEntropyLoss() ############## model.train() measurements = [] for epoch in range(num_epochs): epoch_start = time.monotonic() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) def closure(): model.zero_grad() outputs = model(data) loss = loss_fn(outputs, target) loss.backward() ddp.reduce() # Send the gradients to the appropriate shards return loss optimizer.step(closure) epoch_end = time.monotonic() torch.cuda.synchronize(rank) training_stop = time.monotonic() print("Total Time:", training_stop - training_start) def main(): # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument( "--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument( "--test-batch-size", type=int, default=1000, metavar="N", help="input batch size for testing (default: 1000)" ) parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)") parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)") parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)") parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training") parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass") parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model") args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {"batch_size": args.batch_size} if use_cuda: kwargs.update({"num_workers": 1, "pin_memory": True, "shuffle": True},) transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1, **kwargs) model = Net().to(device) mp.spawn( train, args=(args, model, device, train_loader, args.epochs), nprocs=WORLD_SIZE, join=True, ) if __name__ == "__main__": main()