# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import argparse from collections import defaultdict from functools import reduce import gc import logging import math import operator import time from datasets.wikitext2_data import get_real_dataloaders as get_real_wikitext2_dataloaders from datasets.wikitext2_data import get_synthetic_dataloaders as get_synthetic_wikitext2_dataloaders from models import transformer_lm import numpy as np import torch import torch.distributed as dist from torch.distributed import rpc from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Adam from benchmarks.golden_configs.lm_wikitext2 import Pipe as lm_wikitext2 from fairscale.nn import Pipe from fairscale.nn.model_parallel import initialize_model_parallel from fairscale.utils.testing import dist_init MPI_PORT = 29500 RPC_PORT = 29501 def init_random_seed(seed: int): torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) def get_model_and_optimizer(args, device, benchmark_config, model_config): """Return instantiated model and optimizer function.""" if args.model_name == "lm": model = get_lm_model(args, device, model_config) lr = benchmark_config["lr"] def make_adam(params): return Adam(params, lr=lr) optimizer = make_adam return model, optimizer def get_lm_model(args, device, config): """Get language model(based on GPT-2) used for sequence prediction.""" ninp = config["ninp"] nhead = config["nhead"] initrange = config["initrange"] dropout = config["dropout"] vocab_size = config["vocab_size"] nhid = config["nhid"] ndecoder = config["num_decoder_layers"] if args.lazy_construction: layers = [ LazyModule(lambda: transformer_lm.EmbeddingLayer(vocab_size, ninp, initrange)), LazyModule(lambda: transformer_lm.PositionalEncodingLayer(ninp, dropout)), ] for _ in range(ndecoder): layers.append(LazyModule(lambda: transformer_lm.TransformerDecoderLayer(ninp, nhead, nhid, dropout))) layers.append(LazyModule(lambda: transformer_lm.LinearLayer(ninp, vocab_size, initrange))) model = layers else: model = transformer_lm.TransformerLM(vocab_size, ninp, nhead, nhid, dropout, initrange, ndecoder).to(device) return model def get_tensors_by_size_bucket(): size_buckets = defaultdict(int) for obj in gc.get_objects(): if not isinstance(obj, torch.Tensor): continue if obj.device.type == "cuda": size_buckets[(*obj.size(),) + (obj.element_size(),)] += 1 return size_buckets def log_number_of_parameters(model): num_params = reduce(operator.add, (reduce(operator.mul, x.size()) for x in model.parameters())) if hasattr(model, "group"): total = torch.Tensor([num_params]) if torch.cuda.is_available(): total = total.cuda() torch.distributed.all_reduce(total, group=model.group) logging.debug( f"training model, #params = {num_params}, group: {model.group.rank()}, grank:" f" {torch.distributed.get_rank()}, sizes {model.group.size()}" ) torch.distributed.barrier() if model.group.rank() == 0: logging.debug(f"total #prams = {total.item()}") else: logging.debug(f"training model, #params = {num_params}") def get_device(model, index): if isinstance(model, DDP): model = model.module if not torch.cuda.is_available(): return torch.device("cpu") if hasattr(model, "devices"): return model.devices[index] else: return torch.cuda.current_device() def get_fake_dataloader(lm_dataloader_len, args): fake_input = {"input": torch.zeros(args.batch_size)} class FakeDataset: def __getitem__(self, index): return fake_input def __len__(self): return lm_dataloader_len return FakeDataset() def train(model_config, model, benchmark_config, model_specs, args): lm_dataloader, _, _ = model_config["data"] criterion = benchmark_config["criterion"] vocab_size = model_specs["vocab_size"] optimizer = model_config["optimizer"] model.train() log_number_of_parameters(model) total_loss = 0.0 word_counter = 0 optimizer = optimizer(model.parameters()) pipe_group = model.group if hasattr(model, "group") else None # TODO(anj-s): Avoid sending fake data to all replicas except the first and last one. device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") if pipe_group and pipe_group.rank() != 0 and pipe_group.rank() != (pipe_group.size() - 1): lm_dataloader, _, _ = get_synthetic_dataloaders(args, device, benchmark_config, model_specs) total_tokens = 0 total_tokens_per_log_interval = 0 bptt = 2 start_time = time.time() epoch_start_time = 0.0 def get_batch(source): seq_len = len(source) - 1 data = source[0:seq_len] target = source[1 : 1 + seq_len] return data, target for i, batch in enumerate(lm_dataloader): if i == 1: epoch_start_time = time.time() source, target = get_batch(batch) if args.max_batch and i > args.max_batch: break if i > 0: total_tokens += source.numel() optimizer.zero_grad() try: if pipe_group is None or pipe_group.rank() == 0: tmp = source.to(get_device(model, 0)) output = model(tmp) else: output = model(source) except Exception as e: raise RuntimeError(f"training failed on {torch.distributed.get_rank()}") from e if pipe_group is None or pipe_group.rank() == pipe_group.size() - 1: target = target.to(get_device(model, -1)) output = output.to(target.device) loss = criterion(output.view(-1, vocab_size), target.view(-1)) loss.backward() del target else: model.back_helper(output) del output torch.nn.utils.clip_grad_value_(model.parameters(), model_specs["clip_value"]) optimizer.step() if pipe_group is None or pipe_group.rank() == pipe_group.size() - 1: total_loss += loss.item() log_interval = 1 total_tokens_per_log_interval += source.numel() if i % log_interval == 0 and i > 0: cur_loss = total_loss / log_interval elapsed = time.time() - start_time if dist.get_rank() == dist.get_world_size() - 1: logging.debug( "| batch {:5d} | wps {:5.2f} | loss {:5.2f} | ppl {:8.2f}".format( i, total_tokens_per_log_interval / elapsed, cur_loss, math.exp(cur_loss) ) ) total_tokens_per_log_interval = 0 total_loss = 0 start_time = time.time() if epoch_start_time != 0: wps = total_tokens / (time.time() - epoch_start_time) else: raise RuntimeError( "Unable to benchmark on a single batch. Increase the size " " of the dataset and rerun the benchmark." ) if dist.get_rank() == dist.get_world_size() - 1: return wps, loss.item() else: return 0.0, 0.0 # TODO(anj-s): Add an option for users to be able to benchmark evaluate. def evaluate(eval_model, data_source, criterion, ntokens): eval_model.eval() total_loss = 0.0 # TODO(anj-s): Move this to the benchmark config if we want to benchmark evaluation. bptt = 35 def get_batch(source, i, bptt): seq_len = min(bptt, len(source) - 1 - i) data = source[i : i + seq_len] target = source[i + 1 : i + 1 + seq_len].view(-1) return data, target with torch.no_grad(): for i in range(0, data_source.size(0) - 1, bptt): data, targets = get_batch(data_source, i, bptt) output = eval_model(data) output = output.to(targets.device) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).item() return total_loss / (len(data_source) - 1) def get_number_of_words(data): return data.size()[0] * data.size()[1] def verify_peak_memory(rank, golden_config, std_dev): logging.debug( "Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(rank)["allocated_bytes.all.peak"]) ) current_device_usage = torch.cuda.memory_stats(rank)["allocated_bytes.all.peak"] golden_ref = golden_config["peak_mem_usage"][rank] if not current_device_usage < golden_ref * std_dev: raise RuntimeError( "Peak memory usage for cuda device {:d} is {:d} which" "is less than golden reference value of {:d}".format(rank, current_device_usage, golden_ref) ) def verify_lm_run(wps, golden_config, args): """Verify that words per second for a given benchmark run matches the golden data.""" if dist.get_rank() == dist.get_world_size() - 1: # Assert that words per second is within 3 standard deviations of the average # of five golden runs logging.info("Throughput(wps) is {:.2f}.".format(wps)) if not wps > (golden_config["avg_wps"] - (3 * golden_config["std_dev_wps"])): raise RuntimeError( "Throughput(wps):{:.2f} is below the golden threshold of an " "average value of {:.2f} and standard dev of {:.2f}.".format( wps, golden_config["avg_wps"], golden_config["std_dev_wps"] ) ) for i in range(4): verify_peak_memory(i, golden_config, 1.1) def benchmark_language_model(model_config, model, benchmark_config, model_specs, args): golden_config = get_golden_config(args.model_name, args) epoch = benchmark_config["epochs"] start_time = time.time() if dist.get_rank() == dist.get_world_size() - 1: logging.debug("-" * 110) logging.debug("| start of epoch {:1d}".format(epoch)) logging.debug("-" * 110) wps, loss = train(model_config, model, benchmark_config, model_specs, args) elapsed_time = time.time() - start_time if dist.get_rank() == dist.get_world_size() - 1: logging.debug("-" * 110) logging.debug("| end of epoch {:1d} | time: {:5.2f}s | train loss {:5.2f} ".format(epoch, elapsed_time, loss)) logging.debug("-" * 110) logging.debug("Throughput(wps) is {:.2f}.".format(wps)) logging.debug( "Peak allocated bytes on cuda:{}: {:1d}".format( dist.get_rank(), torch.cuda.memory_stats(dist.get_rank())["allocated_bytes.all.peak"] ) ) if len(model.balance) == 4: if args.model_name == "lm": verify_lm_run(wps, golden_config, args) else: raise RuntimeError("Unrecognized args.model_name " % args.model_name) def generate_balance(num_devices, num_layers): balance = [] layers_assigned = 0 for i in range(num_devices): x = (num_layers - layers_assigned) / (num_devices - i) if x.is_integer(): balance.append(int(x)) layers_assigned += x else: balance.append(math.ceil(x)) layers_assigned += math.ceil(x) return balance def get_synthetic_dataloaders(args, device, benchmark_config, model_specs): """Returns dataloader for synthetic data.""" if args.model_name == "lm": return get_synthetic_wikitext2_dataloaders(args, benchmark_config, model_specs) else: raise RuntimeError("Unrecognized args.model_mame " % args.model_name) def get_real_dataloaders(args, device, benchmark_config, model_specs): """Returns dataloaders for real data.""" if args.model_name == "lm": data = get_real_wikitext2_dataloaders(args, benchmark_config, model_specs) ntokens, train_dataloader, valid_dataloader, test_dataloader = data model_specs["vocab_size"] = ntokens return train_dataloader, valid_dataloader, test_dataloader else: raise RuntimeError("Unrecognized args.model_mame " % args.model_name) def create_model_config(args, benchmark_config=None, model_specs=None): """Return a dict with the given model, dataset and optimizer.""" device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") if args.use_synthetic_data: dataloader_fn = get_synthetic_dataloaders else: dataloader_fn = get_real_dataloaders data = dataloader_fn(args, device, benchmark_config, model_specs) model, optimizer = get_model_and_optimizer(args, device, benchmark_config, model_specs) return { "model": model, "optimizer": optimizer, "data": data, } def create_benchmark_config(model_name): """Return a dict with configurations required for benchmarking `model_name` model.""" if model_name == "lm": return lm_wikitext2.get_benchmark_config() else: raise RuntimeError("Unrecognized args.model_mame " % args.model_name) def get_model_specs(model_name): """Return a dict with configurations required for configuring `model_name` model.""" if model_name == "lm": return lm_wikitext2.get_model_config() else: raise RuntimeError("Unrecognized args.model_mame " % args.model_name) def get_golden_config(model_name, args): """Return a dict with the golden data for throughput and memory usage.""" if model_name == "lm": return lm_wikitext2.get_golden_real_stats() else: raise RuntimeError("Unrecognized args.model_mame " % args.model_name) def benchmark_single_process(args): """Benchmark a given model using a single process and multiple devices.""" init_method_pgroup = "tcp://localhost:{}".format(MPI_PORT) torch.distributed.init_process_group(backend="gloo", rank=0, world_size=1, init_method=init_method_pgroup) num_devices = torch.cuda.device_count() if torch.cuda.is_available() else 1 assert num_devices > 0 init_random_seed(0) benchmark_config = create_benchmark_config(args.model_name) model_specs = get_model_specs(args.model_name) model_config = create_model_config(args, benchmark_config=benchmark_config, model_specs=model_specs) model = model_config["model"] balance = generate_balance(min(num_devices, 4), len(model)) pipe_model = Pipe(model, balance, chunks=args.chunks, checkpoint=args.checkpoint) del model del model_config["model"] if args.dry_run: train(model_config, pipe_model, benchmark_config, model_specs, args) else: benchmark_language_model(model_config, pipe_model, benchmark_config, model_specs, args) def run_worker(rank, world_size, args): if args.world_size != 0: world_size = args.world_size dist_init(rank + args.rank_base, world_size, hostname=args.host) initialize_model_parallel(1, world_size) init_random_seed(0) run_mp_worker(args, world_size) rpc.shutdown() torch.distributed.destroy_process_group() parser = argparse.ArgumentParser(description="benchmark") parser.add_argument("--host", "-o", type=str, default="localhost", help="hostname") parser.add_argument("--chunks", type=int, default=1, help="number of microbatches per batch") parser.add_argument("--batch-size", type=int, default=8, help="size of a batch") parser.add_argument( "--checkpoint", default="never", choices=["always", "except_last", "never"], help="Checkpointing strategy for pipe" ) parser.add_argument( "--lazy-construction", action="store_true", default=False, help="Number of decoder layers in the model" ) parser.add_argument("--max-batch", type=int, default=4, help="Max number of batches") parser.add_argument("--use_synthetic_data", action="store_true", help="Uses synthetic data for running benchmarks.") parser.add_argument("--dry_run", action="store_true", help="Run a sample training run without regression testing.") parser.add_argument( # TODO(anj-s): In the process of adding more models and hence the requirement for a flag. "--model_name", default="lm", help="Language Model(LM) used to benchmark nn.pipe.", ) parser.add_argument("--debug", action="store_true", default=False, help="Display additional debug information") if __name__ == "__main__": args = parser.parse_args() logging.basicConfig(level=logging.INFO if not args.debug else logging.DEBUG) logging.info(f"Running single process benchmark with args: {args}") benchmark_single_process(args)