# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Copyright 2019 Kakao Brain # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from fairscale.nn.pipe.copy import Copy, Wait from fairscale.nn.pipe.stream import CPUStream, current_stream, get_device, is_cuda, new_stream, use_stream skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") def _test_copy_wait(prev_stream, next_stream, cuda_sleep=None): device = get_device(prev_stream) with use_stream(prev_stream): if is_cuda(prev_stream): cuda_sleep(0.5) x = torch.ones(100, device=device, requires_grad=True) (y,) = Copy.apply(prev_stream, next_stream, x) (y,) = Wait.apply(prev_stream, next_stream, x) with use_stream(next_stream): assert torch.allclose(y.sum(), torch.tensor(100.0, device=device)) y.norm().backward() with use_stream(prev_stream): assert torch.allclose(x.grad.sum(), torch.tensor(10.0, device=device)) def test_copy_wait_cpu_cpu(): prev_stream = CPUStream next_stream = CPUStream _test_copy_wait(prev_stream, next_stream) @skip_if_no_cuda def test_copy_wait_cpu_cuda(cuda_sleep): prev_stream = CPUStream next_stream = current_stream(torch.device("cuda")) _test_copy_wait(prev_stream, next_stream, cuda_sleep) @skip_if_no_cuda def test_copy_wait_cuda_cpu(cuda_sleep): prev_stream = current_stream(torch.device("cuda")) next_stream = CPUStream _test_copy_wait(prev_stream, next_stream, cuda_sleep) @skip_if_no_cuda def test_copy_wait_cuda_cuda(cuda_sleep): prev_stream = current_stream(torch.device("cuda")) next_stream = new_stream(torch.device("cuda")) _test_copy_wait(prev_stream, next_stream, cuda_sleep) def test_wait_multiple_tensors(): a = torch.rand(1, requires_grad=True) b = torch.rand(1, requires_grad=True) a, b = Wait.apply(CPUStream, CPUStream, a, b) assert a.grad_fn is b.grad_fn assert a.grad_fn.__class__ is Wait._backward_cls