# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. from .module import Module from typing import Optional from .. import Parameter from ... import Tensor class Embedding(Module): num_embeddings: int = ... embedding_dim: int = ... padding_idx: int = ... max_norm: float = ... norm_type: float = ... scale_grad_by_freq: bool = ... weight: Parameter = ... sparse: bool = ... def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = ..., max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ..., _weight: Optional[Tensor] = ...) -> None: ... def reset_parameters(self) -> None: ... def forward(self, input: Tensor) -> Tensor: ... # type: ignore def __call__(self, input: Tensor) -> Tensor: ... # type: ignore @classmethod def from_pretrained(cls, embeddings: Tensor, freeze: bool = ..., padding_idx: Optional[int] = ..., max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ...): ... class EmbeddingBag(Module): num_embeddings: int = ... embedding_dim: int = ... max_norm: float = ... norm_type: float = ... scale_grad_by_freq: bool = ... weight: Parameter = ... mode: str = ... sparse: bool = ... def __init__(self, num_embeddings: int, embedding_dim: int, max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ..., sparse: bool = ..., _weight: Optional[Tensor] = ...) -> None: ... def reset_parameters(self) -> None: ... def forward(self, input: Tensor, offsets: Optional[Tensor] = ...) -> Tensor: ... # type: ignore def __call__(self, input: Tensor, offsets: Optional[Tensor] = ...) -> Tensor: ... # type: ignore @classmethod def from_pretrained(cls, embeddings: Tensor, freeze: bool = ..., max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ..., sparse: bool = ...): ...